Hostname: page-component-848d4c4894-cjp7w Total loading time: 0 Render date: 2024-06-24T17:09:49.016Z Has data issue: false hasContentIssue false

Introduction of Radiative Isoelectronic Complexes During Molecular Beam Epitaxial Growth of Si and Si1-xGex/Si Superlattices

Published online by Cambridge University Press:  26 February 2011

Karen L. Moore
Affiliation:
University of Rochester, The Institute of Optics, Rochester, NY 14627
Oliver King
Affiliation:
University of Maryland, Laboratory for Physical Sciences, College Park, MD 20740
Dennis G. Hall
Affiliation:
University of Rochester, The Institute of Optics, Rochester, NY 14627
Joze Bevk
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Matthias Furtsch
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

Radiative isoelectronic impurity complexes consisting of pairs of Be atoms that bind excitons can be formed in both Si and SiGe/Si superlattices during growth by molecular beam epitaxy. We describe the conditions under which these radiative complexes can be formed and show that they can be localized in the alloy layers of a superlattice. Experimental results from samples with grown-in Be are compared to previous results from ion implanted samples. Superlattices of varying well widths are examined and a narrowing of the no-phonon linewidth is observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Thomas, D. G., Hopfield, J. J., and Frosch, C. J., Phys. Rev. Lett. 15, 857 (1965).Google Scholar
2. Morgan, T. N., Welber, B., and Bhargava, R. N., Phys. Rev. 166, 751 (1968).Google Scholar
3. Henry, C. H., Dean, P. J., and Cuthbert, J. D., Phys. Rev. 166, 754 (1968).Google Scholar
4. Weber, J., Schmidt, W., and Sauer, R., Phys. Rev. B21, 2401 (1980).Google Scholar
5. Mitchard, G., Lyon, S. A., Elliot, K. R., and McGill, T. C., Solid State Commun. 29, 425 (1979).Google Scholar
6. Bradfield, P. L., Brown, T. G., and Hall, D. G., Phys. Rev. B38, 3533 (1988).Google Scholar
7. Henry, M. O, Becket, D. J., Steele, A. G., and Thewalt, M. L. W., Solid State Commun. 66, 689 (1988).Google Scholar
8. Brown, T. G. and Hall, D. G., Appl. Phys. Lett. 49, 245 (1986); P. L. Bradfield, T. G. Brown, and D. G. Hall, Appl. Phys. Lett. 55, 100 (1989).Google Scholar
9. Modavis, R. A. and Hall, D. G., J. Appl. Phys. 67, 545 (1990).Google Scholar
10. Crouch, R. K., Robertson, J. B., and Gilmer, T. E. Jr., Phys. Rev. B5, 3111 (1972).Google Scholar
11. Henry, M. O., Lightowlers, E. C., Kiloran, N., Dunstan, D. J., and Cavenett, B. C., J. Phys. C14, L255 (1981).Google Scholar
12. Thewalt, M. L. W., Watkins, S. P., Ziemelis, U. O., Lightowlers, E. C., and Henry, M. O., Solid State Commun. 44, 573 (1982).Google Scholar
13. Brown, T. G., Bradfield, P. L., Hall, D. G., and Soref, R. A., Opt. Lett. 12, 753 (1987).Google Scholar
14. Modavis, R. A., Hall, D. G., Bevk, J., Freer, B. S., Feldman, L. C., and Weir, B. E., Appl. Phys. Lett. 57, 954 (1990).Google Scholar
15. Modavis, R. A., Hall, D. G., Bevk, J., and Freer, B. S., Appl. Phys. Lett. 59, 1230 (1991).Google Scholar
16. Bevk, J., Mannaerts, J. P., Ourmazd, A., Feldman, L. C., and Davidson, B. A., Appl. Phys. Lett. 49, 286(1986).Google Scholar
17. Moore, K. L., King, O., Hall, D. G., Bevk, J., and Furtsch, M., Appl. Phys. Lett. 65, 2705 (1994).Google Scholar