Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-19T00:24:47.572Z Has data issue: false hasContentIssue false

Intrinsic Point Defects and Diffusion Processes in Silicon

Published online by Cambridge University Press:  21 February 2011

T. Y. Tan*
Affiliation:
IBM Thomas J. Watson Research Center, Yorktown Heights, NY, 10598
Get access

Abstract

This paper reviews recent progress in understanding the role of vacancies (V) and self-interstitials (I) in self and impurity diffusion in Si. Surface oxidation perturbs the thermal equilibrium concentration of point defects and analyses of the resulting effects on dopant diffusion showed that both V and I are present. Developments in experimental and theoretical works on Au diffusion in Si yielded a determination of the I-component and an estimate of the V-component of the Si self-diffusion coefficient. It is hoped that the I and V thermal equilibrium concentrations may be determined in the near future.A number of important physical aspects of the anomalous diffusion of P are now understood but a basically satisfactory model may need further work.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Seeger, A. and Chik, K. P., Phys. Stat. Solidi 29, 455 (1968).CrossRefGoogle Scholar
2. Hu, S. M., J. Appl. Phys. 45, 1567 (1974).CrossRefGoogle Scholar
3. Masters, B. J., Sol. State Commun. 9, 283 (1971).CrossRefGoogle Scholar
4. Petroff, P. M. and de Kock, A. J. R., J. Cryst. Growth 30, 117 (1975).CrossRefGoogle Scholar
5. Shaw, D., Phys. Stat. Solidi B 72, 11 (1975).CrossRefGoogle Scholar
6. Fair, R. B., in Semiconductor Silicon 1977, Huff, H. R. and Sirtl, E. eds. (Electrochem. Soc., Princeton, 1977) p. 968.Google Scholar
7. van Vechten, J. A., Phys. Rev. B 17, 3197 (1978).CrossRefGoogle Scholar
8. Burgoin, J. C. and Lanoo, M., Rad. Effects 46, 157 (1980).CrossRefGoogle Scholar
9. Kitagawa, H., Hashimoto, K. and Yoshida, M., Jpn. J. Appl. Phys. 23, 2033 (1981).CrossRefGoogle Scholar
10. Gösele, U., Frank, W. and Seeger, A., Appl. Phys. 23, 361 (1980)CrossRefGoogle Scholar
11. Gösele, U., Morehead, F., Frank, W. and Seeger, A., Appl. Phys. Lett. 38, 157 (1981).CrossRefGoogle Scholar
12. Mizuo, S. and Higuchi, H., Jpn. J. Appl. Phys. 20, 739 (1981).CrossRefGoogle Scholar
13. Tan, T. Y. and Gösele, U., Appl. Phys. Lett. 40, 616 (1982).CrossRefGoogle Scholar
14. Tan, T. Y., Gösele, U. and Morehead, F., Appl. Phys. A 31, 97 (1982).CrossRefGoogle Scholar
15. Antoniadis, D. A. and Moskowitz, I., J. Appl. Phys. 53, 9214 (1982).CrossRefGoogle Scholar
16. Morehead, F., Stolwijk, N., Meyberg, W. and Gösele, U., Appl. Phys. Lett. 42, 690 (1983).CrossRefGoogle Scholar
17. Prussin, S., J. Appl. Phys. 43, 2850 (1972).CrossRefGoogle Scholar
18. Sirtl, E., in Semiconductor Silicon 1977, Huff, H. R. and Sirtl, E. eds. (Electrochem. Soc., Princeton, 1977) p. 4.Google Scholar
19. Booker, G. R. and Tunstall, W. J., Phil. Mag. 13, 71 (1966).CrossRefGoogle Scholar
20. Dobson, P. S., Phil. Hag. 24, 567 (1971); 20a. 26, 1301 (1972).Google Scholar
21. Hu, S. M., Appl. Phys. Lett. 27, 165 (1975).CrossRefGoogle Scholar
22. Shiraki, H., Jpn. J. Appl. Phys. 15,1 (1976).CrossRefGoogle Scholar
23. Murarka, S. P., J. Appl. Phys. 48, 5020 (1977).CrossRefGoogle Scholar
24. Leroy, B., J. Appl. Phys. 50, 7996 (1979).CrossRefGoogle Scholar
25. Tan, T. Y. and Gosele, U., J. Appl. Phys. 53, 4767 (1982).CrossRefGoogle Scholar
26. Tan, T. Y. and Ginsberg, B. J., Appl. Phys. Lett. 42, 448 (1983).CrossRefGoogle Scholar
27. Mizuo, S. and Higuchi, H., Kagaku, Denki (J. Jpn. Electrochem. Soc.) 50, #4 (1982).Google Scholar
28. Mizuo, S. and Higuchi, H., Jpn. J. Appl. Phys. 21, 56 (1982).CrossRefGoogle Scholar
29. Ishikawa, Y., Sakino, Y., Tanaka, H., Matsumoto, S. and Niimi, T., J. Electrochem. Soc. 129, 644 (1982).CrossRefGoogle Scholar
30. Matsumoto, S., Ishikawa, Y. and Niimi, T., J. Appl. Phys. 54, 5049 (1983).CrossRefGoogle Scholar
31. Franscis, R. and Dobson, P. S., J. Appl. Phys. 50, 280 (1979).CrossRefGoogle Scholar
32. Hill, C., in Semiconductor Silicon 1981, Huff, H. R., Kriegler, R. J and Takeishi, Y. eds. (Electrochem. Soc., Pennington, 1981) p. 988.Google Scholar
33. Frank, F. C. and Turnbull, D., Phys. Rev. 104, 617 (1956).CrossRefGoogle Scholar
34. Gösele, U. and Tan, T. Y., in Aggregation Phenomena of Point Defects in Silicon, Sirtl, E. and Gorissen, J. eds. (Electrochem. Soc., Pennington, 1983) p. 17.Google Scholar
35. Gösele, U. and Tan, T. Y., in Defects in Semiconductors II, Mahajan, S. and Corbett, J. W. eds. (North-Holland, NY, 1983) p. 45.Google Scholar
36. Tan, T. Y., Morehead, F. and Sösele, U., in Defects in Silicon, Kimerling, L. C. and Bullis, W. M. eds. (Electrochem. Soc., Pennington, 1983) p. 325.Google Scholar
37. Stolwijk, N. A., Schuster, B., Hölzl, J., Mehrer, H. and Frank, W., Physica 116B, 335 (1983).Google Scholar
38. Frank, W., Seeger, A. and Gosele, U., in Defects in Semiconductors, Narayan, J. and Tan, T. Y. eds., (North-Holland, NY, 1981) p. 37.Google Scholar
39. Wilcox, W. R., LaChapelle, T. J. and Forbes, D. H., J. Electrochem. Soc. 111, 1377 (1964).CrossRefGoogle Scholar
40. Kitagawa, H., Hashimoto, K. and Yoshida, M., Jpn. J. Appl. Phys. 21, 276 (1982).CrossRefGoogle Scholar
41. Fairfield, J. M. and Masters, B. J., J. Appl. Phys. 38,3148 (1967).CrossRefGoogle Scholar
42. Mayer, H. J., Mehrer, H. and Maier, K., in Lattice Defects in Semiconductors 1976 (Inst. Phys. Conf. Series 31, London, 1977) p. 186.Google Scholar
43. Kalingnowski, L. and Sequin, R., Appl. Phys. Lett. 35, 211 (1979); 13a. 36, 141 (1980).CrossRefGoogle Scholar
44. Sanders, I. R. and Dobson, P. S., J. Mat. Sci. 9,1987 (1974).CrossRefGoogle Scholar
45. Hirvonen, A. and Anttila, J., Appl. Phys. Lett. 35, 703 (1979).CrossRefGoogle Scholar
46. Mizuo, S. and Higuchi, H., Jpn. J. Appl. Phys. 21, 272 (1982).CrossRefGoogle Scholar
47. Mizuo, S. and Higuchi, H., J. Electrochem. Soc. 129, 2292 (1982);CrossRefGoogle Scholar
48a. Jpn. J. Appl. Phys. 22, 12 (1983).Google Scholar
48. Tan, T. Y., Gösele, U. and Morehead, F., (1982) unpublished.Google Scholar
49. Taniguchi, K., Antoniadis, D. A. and Matsushita, Y., Appl. Phys. Lett. 42, 96 (1983).CrossRefGoogle Scholar
50. Hu, S. M.. in Atomic Diffusion in Semeconductors, Shaw, D. ed. (Plenum, NY, 1973) p. 217.CrossRefGoogle Scholar
51. Willoughby, A. F. W., J. Phys. D 10, 455 (1977);CrossRefGoogle Scholar
51a. Rep. Prog. Phys. 41, 1665 (1978).CrossRefGoogle Scholar
52. Willoughby, A. F. W., in Impurity Doping Process in Silicon, Wanged, F. F. Y.. (North-Holland, NY 1981) p. 1 Google Scholar
53. Seeger, A., Frank, W. and Gosele, U., in Defects and Radiation Effects in Semiconductors 1978 (Inst. Phys. Conf. Series 46, London, 1979) p. 148 .Google Scholar
54. Gosele, U. and Strunk, H., Appl. Phys. 20, 265 (1979).CrossRefGoogle Scholar
55. Duffy, M. C., Barson, F., Fairfield, J. H. and Schwuttke, G. H., J. Electrochem. Soc. 115, 84 (1968).CrossRefGoogle Scholar
56. Schmidt, P. F. and Stickler, R., J. Electrochem Soc. 111, 1188 (1964).CrossRefGoogle Scholar
57. O’Keefe, T. W., Schmidt, P. F. and Stickler, R., J. Electrochem. Soc. 112, 878 (1965).CrossRefGoogle Scholar
58. Kooi, E., J. Electrochem. Soc. 111, 1383 (1964).CrossRefGoogle Scholar
59. Jaccodine, R. J., J. Appl. Phys. 39, 3105 (1968).CrossRefGoogle Scholar
60. Armigliato, A., Nobili, D., Servidori, H. and Solmi, S., J. Appl. Phys. 47, 5489 (1976).CrossRefGoogle Scholar
61. Nobili, D., Armigliato, A., Finnetti, M. and Solmi, S., J. Appl. Phys. 53, 1484 (1982).CrossRefGoogle Scholar
62. Jaccodine, R. J., in Defects in Semiconductors II, Mahajan, S. and Corbett, J. W. eds. (North-Holland, NY, 1983) p.101. Google Scholar
63. Lawrence, J. E., J. Appl. Phys. 37, 4106 (1966).CrossRefGoogle Scholar
64. Claeys, C. L., Declerck, G. J. and van Overstraeten, R. J., Revue de Physique Appliquèe 13, 797 (1978).CrossRefGoogle Scholar
65. Shibayama, H., Masaki, H., Ishikawa, H. and Hashimoto, H., J. Electrochem. Soc. 123, 743 (1976).CrossRefGoogle Scholar
66. Schwettmann, F. N. and Kendall, D. L., Appl. Phys. Lett. 19, 218 (1971);CrossRefGoogle Scholar
66a. Appl. Phys. Lett. 20, 2 (1972).Google Scholar
67. Yoshida, M., Jpn. J. Appl. Phys. 19, 2427 (1980).CrossRefGoogle Scholar
68. Fair, R. B. and Tsai, J. C. C., J. Electrochem. Soc. 124, 1107 (1977).CrossRefGoogle Scholar
69. Claeys, C. L., Declerck, G. J. and van Overstraeten, R. J, in Semiconductor Characterization Technique, Barnes, P. A. and Rozgonyi, G. A. eds. (Electrochem.Soc., Princeton, 1978) p. 336.Google Scholar
70. Armigliato, A., Servidori, M., Solmi, S. and Vechi, I., J. Appl. Phys. 48, 1806 (1977).CrossRefGoogle Scholar
71. Strunk, H., Gösele, U. and Kolbesen, B. O., Appl. Phys. Lett. 34, 530 (1979).CrossRefGoogle Scholar
72. Hashimoto, H., Shibayama, H., Masaki, H. and Ishikawa, H., J. Electrochem. Soc. 123, 1899 (1976).CrossRefGoogle Scholar
73. Hu, S. M., Fahey, P. and Dutton, R. W., J. Appl. Phys. Nov, 1983.Google Scholar
74. Actually the reactions involved in Pi−Ps convertion are (a) Pi⇄Ps+I, and (b) Pi+V⇄Ps , instead of the form of reaction (27). The use of reaction (27) In the discussion amounts to employing the assumption that values of CI and CV (not equal to CI eq and CV eq) resulting from reactions (a) and(b) are regarded as constants. This allows to elucidate in a simple and understandable manner of (i) what is a two stream diffusion, and (ii)why Pi−Ps convertion needs to be very slow.Google Scholar
75. Tseng, W. F., Law, S. S. and Mayer, J. W., Phys. Lett. 68A, 93 (1978)CrossRefGoogle Scholar