Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T04:08:14.013Z Has data issue: false hasContentIssue false

Inter-Sub-Level Spectroscopy of P-Type Modulation-Doped Ge Quantum Dots

Published online by Cambridge University Press:  10 February 2011

J. L. Liu
Affiliation:
Device Research Laboratory, Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095-1594, jliu@ee.ucla.edu
W. G. Wu
Affiliation:
Device Research Laboratory, Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095-1594
G. Jin
Affiliation:
Device Research Laboratory, Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095-1594
Y. H. Luo
Affiliation:
Device Research Laboratory, Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095-1594
S. G. Thomas
Affiliation:
Device Research Laboratory, Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095-1594
Y. Lu
Affiliation:
Device Research Laboratory, Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095-1594
K. L. Wang
Affiliation:
Device Research Laboratory, Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA 90095-1594
Get access

Abstract

Inter-sub-level transitions in p-type modulation-doped Ge quantum dots are observed. The structure is grown by molecular beam epitaxy and consists of 30 periods of Ge quantum dots separated by 6 nm boron-doped Si layers. An absorption peak in the mid-infrared range is observed at room temperature by Fourier transform infrared spectroscopy, and is attributed to the transition between the first two heavy hole states of the Ge quantum dots. This study suggests the possible use of modulation-doped Ge quantum dots for improved infrared detector application.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Benisty, H., Sottomayor-Torres, C. M., and Weisbuch, C., Phys. Rev. B44, 10945 (1991).10.1103/PhysRevB.44.10945Google Scholar
2. Bockelmann, U., and Bastard, G., Phys. Rev. B42, 8947 (1990).10.1103/PhysRevB.42.8947Google Scholar
3. Sugawara, M., Mukai, K., and Shoji, H., Appl. Phys. Lett. 71, 2791 (1997).10.1063/1.120135Google Scholar
4. Drexler, H., Leonard, D., Hansen, W., Kotthaus, J. P., and Petroff, P. M., Phys. Rev. Lett. 73, 2252 (1994).10.1103/PhysRevLett.73.2252Google Scholar
5. Phillips, J., Kamath, K., Zhou, X., Chervela, N., and Bhattacharya, P., Appl. Phys. Lett. 71, 2079 (1997).10.1063/1.119347Google Scholar
6. Sauvage, S., Boucaud, P., Julien, F. H., Gerard, J.-M., and Thierry-Mieg, V., Appl. Phys. Lett. 71, 2785 (1997).10.1063/1.120133Google Scholar
7. Berryman, K. W., Lyon, S. A., and Segev, M., Appl. Phys. Lett. 70, 1861 (1997).10.1063/1.118714Google Scholar
8. Liu, J. L., Wu, W. G., Balandin, A., Jin, G. L., and Wang, K. L., Appl. Phys. Lett., 74, 185(1999)10.1063/1.123287Google Scholar
9. Sakamoto, K., Matsuhata, H., Tanner, M. O., Wang, D., and Wang, K. L., Thin Solid Films 321, 55(1998)10.1016/S0040-6090(98)00443-XGoogle Scholar
10. Mateeva, E., Sutter, P., Bean, J. C., Lagally, M. G., Appl. Phys. Lett., 71, 3233(1997)10.1063/1.120300Google Scholar
11. Wang, K.L., and Karunasiri, R.P.G., “Infrared Detectors Using SiGe/Si Quantum Well Structures” in “Semiconductor Quantum Wells and Superlattices for Long-Wavelength Infrared Detectors”, edited by Manasreh, M.O., Artech House, 1993, page 139.Google Scholar
12. This number is estimated based on unstrained Ge dots and underlying Si. The presence of strain and the separation of donors and carriers change the bandgaps of Si and Ge, and thus the corresponding band offset.Google Scholar