Skip to main content Accessibility help

Intersubband Transitions in InAs/AlSb Quantum Wells

  • J. Li (a1), K. Kolokolov (a1), C. Z. Ning (a1), D. C. Larraber (a2), G. A. Khodaparast (a2), J. Kono (a2), K. Ueda (a3), Y. Nakajima (a3), S. Sasa (a3) and M. Inoue (a3)...


We have studied intersubband transitions in InAs/AlSb quantum wells experimentally and theoretically. Experimentally, we performed polarization-resolved infrared absorption spectroscopy to measure intersubband absorption peak frequencies and linewidths as functions of temperature (from 4 K to room temperature) and quantum well width (from a few nm to 10 nm). To understand experimental results, we performed a self-consistent 8-band k·p band-structure calculation including spatial charge separation. Based on the calculated band structure, we developed a set of density matrix equations to compute TE and TM optical transitions self-consistently, including both interband and intersubband channels. This density matrix formalism is also ideal for the inclusion of various many-body effects, which are known to be important for intersubband transitions. Detailed comparison between experimental data and theoretical simulations is presented.



Hide All
[1] Mailhiot, C. and Smith, D. L., J. Vac. Sci. Technol. A 7, 445 (1989).
[2] Mohseni, H., Michel, E., Sandoen, Jan, Razeghi, M., Mitchel, W., and Brown, G., Appl. Phys. Lett, 71, 1403 (1997)
[3] Many laser related applications based on Antimonide materials can be found in, Antimonide-r elated strained-layer hetero structures, Manasreh, M.O. (ed.), OPA (1997, Amsterdam).
[4] Liu, A. and Ning, C. Z., Appl. Phys. Lett. 76, 1984 (2000)
[5] Liu, A. and Ning, C. Z., in “Nonlinear Optics: Materials, Fundamentals and Applications”, (Optical Society of America, Washington DC, 2000), pp. 5658.
[6] Tuttle, G., Kroemer, H., and English, J. H., J. Appl. Phys. 65, 5239 (1989)
[7] Kroemer, H., Nguyen, C., and Brar, B., J. Vac. Sci. Technol. B10, 1769 (1992)
[8] Chadi, D. J., Phys. Rev. B 47, 13478 (1993)
[9] Lin-Chuang, P. J. and Yang, M. J., Phys. Rev. B 48, 5338 (1993).
[10] Warburton, R. J., Gauer, C., Wixforth, A., Kotthaus, J. P., Brar, B., and Kroemer, H., Phys. Rev. B 53, 7903 (1996).
[11] Ando, T., Solid State Commun. 21, 133 (1977).
[12] Allen, S. J., Tsui, D. C., and Vinter, B., Solid State Commun. 20, 425 (1976).
[13] Chuang, S. L., Luo, M. S.-C., Schmitt-Rink, S., and Pinczuk, A., Phys. Rev. B 46, 1897 (1992).
[14] Huang, D., Gumbs, G., and Manasreh, M. O., Phys. Rev. B 52, 14126 (1995).
[15] Haug, H. and Koch, S. W., Quantum theory of the optical and electronic properties of semiconductors, 2nd, World Scientific, (1993, Singapore).
[16] Chow, W. and Koch, S. W., Semiconductor-Laser Physics, Spinger-Verlag, (1994, Berlin Heidelberg).
[17] Li, J. and Ning, C. Z., to be published.
[18] See, e.g., Stradling, R. A. and Wood, R. A., J. Phys. C 3, L94 (1970).
[19] Covington, B. C., Lee, C. C., Hu, B. H., Taylor, H. F., and Streit, D. C., Appl. Phys. Lett. 54, 2145 (1989).
[20] Manasreh, M. O., Szmulowicz, F., Fischer, D. W., Evans, K. R., and Stutz, C. E., Appl. Phys. Lett. 57, 1790 (1990).
[21] Huang, X. L. et al., J. Appl. Phys. 82, 4394 (1997).
[22] Ando, T., Z. Phys. B 24, 33 (1976).
[23] Bolognesi, C. R., Kroemer, H., and English, J. H., Appl. Phys. Lett. 61, 213 (1992).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed