Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-15T21:45:50.591Z Has data issue: false hasContentIssue false

Interplay of charge, orbital and magnetic order in Pr1−xCaxMnO3

Published online by Cambridge University Press:  10 February 2011

M. v. Zimmermann
Affiliation:
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA
J.P. Hill
Affiliation:
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA
Doon Gibbs
Affiliation:
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA
M. Blume
Affiliation:
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973, USA
D. Casa
Affiliation:
Department of Physics, Princeton University, New Jersey 08544, USA
B. Keimer
Affiliation:
Department of Physics, Princeton University, New Jersey 08544, USA Max-Planck-Institut für Festkörperforschung, 70569, Stuttgart, Germany.
Y. Murakami
Affiliation:
Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, 305-0801, Japan
Y. Tomioka
Affiliation:
Joint Research Center for Atom Technology (JRCAT), Tsukuba 305-0046, Japan
Y. Tokura
Affiliation:
Department of Applied Physics, University of Tokyo, Tokyo 113-0033, Japan and JRCAT
Get access

Abstract

We report resonant x-ray scattering studies of charge and orbital order in Prl−xCaxMnO3 with x=0.4 and 0.5. Below the ordering temperature, To=245 K, the charge and orbital order intensities follow the same temperature dependence, including an increase at the antiferromagnetic ordering temperature, TN. High resolution measurements reveal, however, that long range orbital order is never achieved. Rather, an orbital domain state is formed. Above To, the charge order fluctuations are more highly correlated than the orbital fluctuations. We conclude that the charge order drives the orbital order at the transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wollan, E.O. and Koehler, W.C., Phys. Rev. 100, 545, (1955).10.1103/PhysRev.100.545Google Scholar
[2] Goodenough, J.B., Phys. Rev. 100, 555, (1955).10.1103/PhysRev.100.564Google Scholar
[3] Murakami, Y., Kawada, H., Kawata, H., Tanaka, M., Arima, T., Morimoto, Y. and Tokura, Y., Phys. Rev. Lett. 80, 1932, (1998).10.1103/PhysRevLett.80.1932Google Scholar
[4] Murakami, Y., Hill, J.P., Gibbs, Doon, Blume, M., Koyama, I., Tanaka, M., Kawata, H., Arima, T., Tokura, Y., Hirota, K. and Endoh, Y., Phys. Rev. Lett. 81, 582, (1998).10.1103/PhysRevLett.81.582Google Scholar
[5] Ishihara, S. and Maekawa, S., Phys. Rev. Lett. 80 3799, (1998).10.1103/PhysRevLett.80.3799Google Scholar
[6] Fabrizio, M., Altarelli, M. and Benfatto, M., Phys. Rev. Lett., 80 3400 (1998), ibid 81 4030 (1998).10.1103/PhysRevLett.80.3400Google Scholar
[7] Elfimov, I.S., Anisimov, V.I. and Sawatzky, G.A. Phys. Rev. Lett. 82, 4264 (1999).10.1103/PhysRevLett.82.4264Google Scholar
[8] Endoh, Y., Hirota, K., Ishihara, S., Okamoto, S., Murakami, Y., Nishizawa, A., Fukuda, T., Kimura, H., Nojiri, H., Kaneoko, K. and Maekawa, S., Phys. Rev. Lett., 82, 4328 (1999).10.1103/PhysRevLett.82.4328Google Scholar
[9] Paolasini, L., Vettier, C., Bergevin, F. de, Mannix, D., Neubeck, W., Stunault, A., Yakhou, F., Honig, J.M. and Metcalf, P.A., Phys. Rev. Lett. 82, 4719 (1999).10.1103/PhysRevLett.82.4719Google Scholar
[10] Benfatto, M., Joly, Y. and Natoli, C. R., Phys. Rev. Lett., 83 636 (1999).10.1103/PhysRevLett.83.636Google Scholar
[11] Jirák, Z., Krupica, S., Simsa, Z., Dlouhá, M. and Vratislav, S., J.of Mag. and Mag. Mat. 53, 153, (1985).10.1016/0304-8853(85)90144-1Google Scholar
[12] Okimoto, Y., Tomioka, Y., Onose, Y., Otsuka, Y. and Tokura, Y., Phys. Rev. B 57, R9377 (1998).10.1103/PhysRevB.57.R9377Google Scholar
[13] The CE-type charge order structure is stable for 0.4 < x < 0.7 in Pr1-xCaxMnO3. For x < 0.5, the excess electrons are believed to reside in partially occupied 3z 2r 2 orbitals [11].Google Scholar
[14] Gibbs, D., Blume, M., Harshman, D.R. and McWhan, D.B., Rev. Sci. Instrum., 60 1655 (1988).10.1063/1.1141052Google Scholar
[15] see e.g. Blume, M. in Resonant Anomalous x-ray Scattering Ed.s Materlik, G., Sparks, C.J., and Fischer, K., North Holland, 1991, p. 495, and A. Kirfel, ibid p. 231.Google Scholar
[16] Finkelstein, K.D., Shen, Q. and Shastri, S. Phys. Rev. Lett., 69, 1612 (1992).10.1103/PhysRevLett.69.1612Google Scholar
[17] Radaelli, P.G., Cox, D.E., Marezio, M., Cheong, S.-W., Phys. Rev. B 55 3015 (1997).10.1103/PhysRevB.55.3015Google Scholar
[18] Zimmermann, M. v. et al. , in preparation.Google Scholar
[19] Wei Bao, Axe, J.D.. Chen, C.H. and Cheong, S.-W., Phys. Rev. Lett. 78 543, (1997).Google Scholar
[20] The correlation length of the charge order must be at least as long as that of the orbital order, since the unit cell of the orbital order is defined on the charge order lattice.Google Scholar
[21] Tomioka, Y., Asamitsu, A., Kawahara, H., Morimoto, Y. and Tokura, Y., Phys. Rev. B 53, R1689 (1996).10.1103/PhysRevB.53.R1689Google Scholar
[22] As estimated by performing a 1-d deconvolution of the resolution and using , were Δκ is the fitted HWHM.Google Scholar
[23] Note the q-dependence of the resolution function is much too small to explanin the observed broadening.Google Scholar
[24] Millis, A.J., private communication.Google Scholar