Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T03:53:38.831Z Has data issue: false hasContentIssue false

Interpartical Attractions and the Mechanical Properties of Colloidal Gels

Published online by Cambridge University Press:  25 February 2011

C. J. Rueb
Affiliation:
Department of Chemical Engineering, University of Illinois, Urbana, Illinois 61801
C. F. Zukoski
Affiliation:
Department of Chemical Engineering, University of Illinois, Urbana, Illinois 61801
Get access

Abstract

The influence of the strength of interparticle attractions on the mechanical properties of colloidal gels is explored. As attractions increase, suspensions gel. At the gel point the zero shear rate viscosity diverges while the low frequency modulus becomes measurable. In addition at the gel point, storage and loss moduli were of the same order and displayed power law sealing on oscillation frequency. With much stronger attractions, the critical strain required to rupture the gel scales in a power law manner or elastic modulus. These observations are discussed in terns of recently developed models of gel fonnation and dynamics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1) Velamakanni, B. V., Chang, J. C., Lange, F. F. and Pearson, D. S., Langmuir 6, 1323 (1990).Google Scholar
2) Jansen, J. W., deKrivif, C. G. and Vrij, A., J. Colloid Interface Sci. 114, 492 (1986).Google Scholar
3) Woutersen, A. T. J. M. and deKruif, C. G., J. Chem. Phys. 94, 5739 (1991).Google Scholar
4) Marshall, L. and Zukoski, C. F., J. Chem. Phys. 94, 5739 (1990).Google Scholar
5) Rouw, P. W. and deKruif, C. G., J. Chem. Phys. 88, 779 (1988).Google Scholar
6) deKruif, C. G., Rouw, P. W., Briek, W. J., Duits, M. H. O., Vrij, A. and May, R. P., Langmuir 5, 422 (1989).Google Scholar
7) Stober, Fink and BolnGoogle Scholar
8) Bogush, G. H., Tracey, M. A., and Zukoski, C. F., J. NonCrystalline Solids 5, 422 (1989).Google Scholar
9) Helden, A. K. van and Vrij, A., J. Colloid Interface Sci. 78, 312 (1980).Google Scholar
10) For example, Stauffer, D., Coniglio, A. and Adam, M. in Adv. in Polymer Sci., 44 74 (1982).Google Scholar
11) Muthukumar, M., J. Chem. Phys. 83, 3161 (1985).Google Scholar
12) Chambon, F. and Winka, H. H., J. Rheol. 31, 683 (1987).Google Scholar
13) Winker, H. H. and Chambon, F., J. Rheol. 30, 367 (1986).Google Scholar
14) Martin, J. E., Adolf, D. and Wilcoxon, J. P., Phys. Rev. A. 39, 1325 (1989).Google Scholar
15) Adolf, D., Martin, J. E. and Wilcoxon, J. P., Macromolecules 23, 527 (1990).Google Scholar
16) Martin, J. E. and Wilcoxon, J. P., Phys. Rev. Lett. 61, 373 (1988).Google Scholar
17) Dietler, G., Aubert, C., Cannell, D. and Wiltzius, P., Phys. Rev. Lett. 57, 3117 (1986).Google Scholar
18) Kantor, Y. and Webman, I, Phys. Rev. Lett. 52 1891 (1984).Google Scholar
19) Shib, W-H., Shih, W. Y., Kim, S-I., Liu, J. and Aksay, I. A., Mat. Res. Soc. Symp. Proc., 155, 1989.Google Scholar
20) Buscall, R., Mills, P. D., Goodwin, J. W. and Lawson, D. W., J. Chem. Soc. Faraday Trans. I 84, 4249 (1989).Google Scholar