Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-22T02:17:31.305Z Has data issue: false hasContentIssue false

The Internal Photoemission of Electrons and Holes from Metals into Hydrogenated Amorphous Silicon

Published online by Cambridge University Press:  25 February 2011

M. Hicks
Affiliation:
Center for Electronic Materials and Processing, The Pennsylvania State University, University Park, PA 16802
S. Lee
Affiliation:
Center for Electronic Materials and Processing, The Pennsylvania State University, University Park, PA 16802
Satyendra Kumar
Affiliation:
Center for Electronic Materials and Processing, The Pennsylvania State University, University Park, PA 16802
C. R. Wronski
Affiliation:
Center for Electronic Materials and Processing, The Pennsylvania State University, University Park, PA 16802
M. Pinarbasi
Affiliation:
Coordinated Science Laboratory, University of Illinois, Urbana, IL 61801
Get access

Abstract

Internal photoemission is used to investigate the mobility edges in high quality, undoped, hydrogenated amorphous silicon (a-Si:H). The detailed studies carried out on intimate metal/ a- Si:H Schottky barriers are described and results on the electron barrier heights of these contacts formed on a-Si:H having different bandgaps are presented. The observed dependence of the barrier heights on changes in the optical gap due to hydrogen incorporation indicates that not all of these changes are due to the shifts of the valence band edges. The first results on the injection of holes into the valence band of a-Si:H are reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wronski, C.R., Abeles, B., Cody, G.D., and Tiedje, T., Appl.Phys. Lett. 37, 96(1980).Google Scholar
2. Yamamoto, T., Mishima, Y., Hirose, M., and Osaka, Y., Jpn. J. Appl. Phys. 20, suppl. 20–2, 185(1981).CrossRefGoogle Scholar
3. Wronski, C.R., and Carlson, D.E., Solid State Commun. 23, 421(1977).Google Scholar
4. Thompson, M.J., Johnson, N.M., Nemanich, R.J., and Tsai, C.C., Appl. Phys. Lett. 39, 274(1981).CrossRefGoogle Scholar
5. Pinarbasi, M., Maley, N., Mayers, A., and Abelson, J.R., Thin Solid Films, 171 (1989) (in Press).Google Scholar
6. Crowell, C.R. and Sze, S.M., Solid State Electronics 99, 1035(1966).CrossRefGoogle Scholar
7. Wronski, C.R., Jpn. J. Appl. Phys. 17, 299(1978).Google Scholar
8. Wronski, C.R., Abeles, B. and Cody, G.D., Solar Cells 2, 245(1980).CrossRefGoogle Scholar
9. Wiedeman, S., Bennett, M.S., Newton, J.L. in Amorphous Silicon Semiconductors - Pure and Hydrogenated, eds, Madan, A., Thompson, M., Adler, D. and Hamakawa, Y. (Mater. Res. Soc. Proc. 95, Pittsburgh, PA 1987) p. 145.Google Scholar
10. Bapat, D.R., Narasimhan, K.L., and Kuchibhotla, R., Philos. Mag. B, 56, 71(1987).CrossRefGoogle Scholar
11. Cody, G.D., Tiedje, T., Abeles, B., Brooks, B. and Goldstein, Y. Phys. Rev. Lett. 47, 1480(1981).Google Scholar
12. von Roedern, B., Ley, L., and Cardona, M., Phys. Rev. Lett. 39, 1576(1977).Google Scholar