Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T09:12:26.368Z Has data issue: false hasContentIssue false

Interlayer Spacing of Sputter Deposited Vanadium Pentoxide

Published online by Cambridge University Press:  26 February 2011

Carolyn Rubin Aita
Affiliation:
Materials Department and the Laboratory for Surface Studies University of Wisconsin - Milwaukee P.O. Box 784 Milwaukee, Wisconsin 53201
Chee-Kin Kwok
Affiliation:
Materials Department and the Laboratory for Surface Studies University of Wisconsin - Milwaukee P.O. Box 784 Milwaukee, Wisconsin 53201
Mei Lee Kao
Affiliation:
Materials Department and the Laboratory for Surface Studies University of Wisconsin - Milwaukee P.O. Box 784 Milwaukee, Wisconsin 53201
Get access

Abstract

Vanadium pentoxide films were grown by sputtering a V target in O2-bearing atmospheres containing 0 to 98% Ar. The interlayer spacing was siudied as a function of sputtering gas 02 content. The results are discussed in terms of defects in thevanadyl 0 layir and correlated with target surface oxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fiermans, L., Clauws, P., Lambrecht, W., Vandenbrouche, L., and Vennik, J., phys. stat. sol (a) 59, 485 (1980).Google Scholar
2. Copaert, M.V., Z. Phys. Chem. 84, 150 (1973).CrossRefGoogle Scholar
3. Fiermans, L., Vandenbrouche, L., Vandenberge, R., Vennik, J., and Dalmai, G., J. Micros. Spectros. Electron. 4,543 (1979).Google Scholar
4. Perlstein, J.H., J.Sol. State Chem. 3, 217 (1971).Google Scholar
5. Nadkarni, G.S. and Shirodkar, V.S., Thin Sol. Films 105, 115 (1983).Google Scholar
6. Kenny, N., Kannewurf, C.R., and Whitmore, D.H., J.Phys. Chem. Solids 27, 1237 (1966).Google Scholar
7. Karvaly, B. and Hevesi, I., Z. Naturforsch 26a, 245 (1971).CrossRefGoogle Scholar
8. Bodo, Z. and Hevesi, I., phys. stat. sol. 20, K45 (1967).Google Scholar
9. Aita, Carolyn Rubin, Liu, Ying-Li, Kao, Mei Lee, and Hansen, Steven D., J. Appl. Phys. 60, 749 (1986).Google Scholar
10.Joint Committee on Powder Diffraction Standards, File No. 9–387 (1974). Note that the crystal axes band c are reversed in this reference from the manner in which they appear throughout the literature.Google Scholar
11. Bachmann, H.G., Ahmed, F.R., and Barnes, W.H., Z. Kristallogr. Mineral. 115, 110 (1961).Google Scholar
12. Fiermans, L. and Vennik, J., Surf. Sci. 9, 187 (1968).Google Scholar
13. Mosset, A., Lecante, P., Galy, J., and Livage, J., Phil. Mag. B 46, 137 (1982).Google Scholar
14. Gillis, E. and Boesman, E., phys. stat. sol. 14, 337 (1966).CrossRefGoogle Scholar
15. Bystrom, A, Wilhelmi, K.-A., and Brotsen, O, Acta Chem. Scand. 4, 1119 (1950).Google Scholar
16. Aita, Carolyn Rubin and Kao, Mei Lee, J.Vac. Sci. Technol A 5 xxx (1987) in press.CrossRefGoogle Scholar
17. Hansen, S.D. and Aita, C.R., J.Vac. Sci. Technol. A 3, 660 (1985).Google Scholar
18. Azaroff, L.V., Elements of X-ray Crystallography (McGraw-Hill, New York, 1968) pp. 556558.Google Scholar