Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-17T00:14:10.403Z Has data issue: false hasContentIssue false

Interference-enhanced Raman Scattering in Strain Characterization of Ultra-thin Strained SiGe and Si Films on Insulator

Published online by Cambridge University Press:  17 March 2011

Haizhou Yin
Affiliation:
Princeton Institute for the Science and Technology of Materials (PRISM) and Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
K.D. Hobart
Affiliation:
Naval Research Laboratory, Washington, DC 20357
S.R. Shieh
Affiliation:
Department of Geosciences, Princeton University, Princeton, NJ 08544
R.L. Peterson
Affiliation:
Princeton Institute for the Science and Technology of Materials (PRISM) and Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
T.S. Duffy
Affiliation:
Department of Geosciences, Princeton University, Princeton, NJ 08544
J.C. Sturm
Affiliation:
Princeton Institute for the Science and Technology of Materials (PRISM) and Department of Electrical Engineering, Princeton University, Princeton, NJ 08544
Get access

Abstract

Interference-enhanced Raman scattering was utilized to characterize strain in ultra-thin strained silicon-germanium (SiGe) and silicon layers on insulator. Strained SiGe and silicon films with thickness ranging from 10 to 30 nm on insulating borophosphorosilicate glass (BPSG) were formed by layer transfer techniques and/or strain manipulation via lateral expansion of strained films. The optical interference of the multiple reflections at the BPSG interfaces can substantially boost the reflectivity at the interfaces. The reflection improves Raman signal from SiGe and/or silicon films by increasing excitation intensity and Raman signal collection in the thin films. With the use of interference-enhanced Raman scattering, strain can be characterized at visible wavelengths for films as thin as 10 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ismail, K., Arafa, M., Saenger, K. L., Chu, J. O., and Meyerson, B. S. 1, Appl. Phys. Lett. 66, 1077 (1995)Google Scholar
2. Xie, Y. H., Don Monroe, Fitzgerald, E. A., Silverman, P. J., Thiel, F. A., and Watson, G. P., Appl. Phys. Lett. 63, 2263 (1993)Google Scholar
3. Tezuka, T., Sugiyama, N., and Takagi, S., Appl. Phys. Lett. 79 (12), 17981800 (2001).Google Scholar
4. Cheng, Z. Y., Currie, M. T., Leitz, C. W. et al. , IEEE Electron Device Lett. 22 (7), 321323 (2001).Google Scholar
5. Huang, L. J., Chu, J. O., Goma, S. A. et al. , IEEE Trans. Electron Devices 49, 1566 (2002).Google Scholar
6. Yin, H., Hobart, K. D., Peterson, R. L., Kub, F. J., Shieh, S. R., Duffy, T. S. and Sturm, J. C., Int. Electron Devices Meeting (IEDM 2003) Tech. Dig., pp. 3.2.1– 3.2.4. (2003)Google Scholar
7. Rim, K., Chan, K., Shi, L. et al. , Int. Electron Devices Meeting (IEDM 2003) Tech. Dig., pp. 3.1.1– 3.1.4. (2003)Google Scholar
8. Tsang, J.C., Mooney, P.M., Dacol, F., and Chu, J.O., J. Appl. Phys. 75, 8098 (1994)Google Scholar
9. Aspnes, D.E. et al. , Phys. Rev. B 27, 985 (1983)Google Scholar
10. Drake, T. S., Chléirigh, C. Ní, Lee, M. L., Pitera, A. J., Fitzgerald, E. A., et al. , Appl. Phys. Lett. 83, 875 (2003)Google Scholar
11. Hobart, K.D., Kub, F.J., Fatemi, M., Twigg, M.E., Thompson, P.E., Kuan, T.S., and Inoki, C.K., J. Electron. Mater. 29, 897 (2000).Google Scholar
12. Yin, H., Huang, R., Hobart, K.D., Suo, Z., Kuan, T.S., Inoki, C.K., Shieh, S.R., Duffy, T.S., Kub, F.J., and Sturm, J.C., J. Appl. Phys. 91, 9716 (2002).Google Scholar
13. Yin, H., Hobart, K.D., Kub, F.J., Shieh, S.R., Duffy, T.S., and Sturm, J.C., Appl. Phys. Lett. 82, 3853 (2003).Google Scholar
14. Lockwood, D.J. and Baribeau, J.-M., Phys. Rev. B 45, 8565 (1992)Google Scholar
15. Born, M. and Wolf, E., Principles of optics. Pergmon, New York (1980)Google Scholar