Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-01T20:46:04.719Z Has data issue: false hasContentIssue false

Interface Structure of Ge/Si Superlattices Determined by X-Ray Absorption Fine Structure

Published online by Cambridge University Press:  22 February 2011

P. Aebi
Affiliation:
Institute for Materials Research, McMaster University, Hamilton, L8S 4M1, CANADA.
T. Tyliszczak
Affiliation:
Institute for Materials Research, McMaster University, Hamilton, L8S 4M1, CANADA.
A. P. Hitchcock
Affiliation:
Institute for Materials Research, McMaster University, Hamilton, L8S 4M1, CANADA.
J. -M. Baribeau
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6, CANADA.
D. J. Lockwood
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6, CANADA.
T. E. Jackman
Affiliation:
Institute for Microstructural Sciences, National Research Council, Ottawa, K1A 0R6, CANADA.
Get access

Abstract

We illustrate the usefulness of the Extended X-ray Absorption Fine Structure (EXAFS) technique to determine the amount of interface mixing and strain condition in the study of (SimGen)p short-period superlattices. It is found that for n < 4, the number of Ge and Si nearest neighbours to Ge atoms is consistent with ∼25% interfacial mixing and that the Ge-Ge bond length corresponds to that of coherently strained Ge. The Si-Ge bond length is shorter, close to that of a strained Si0.25Ge0.75 alloy. For n > 4, the Ge-Ge bond length and the number of Si-Ge nearest neighbours increase significantly consistent with partial relaxation and interdiffusion. Raman scattering spectroscopy and x-ray reflectometry measurements are also presented and are consistent with the conclusions of the EXAFS analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1- Froyen, S., Wood, D. M., Zunger, A., Phys. Rev. B 36 (1987) 4547, Phys. Rev. B 37, 6893 (1988).Google Scholar
2- Miki, K., Sakamoto, K. and Sakamoto, T., Mat. Res. Soc. Symp. Proc. Vol. 148, 323 (1989).Google Scholar
3- Eaglesham, D. J. and Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
4- Narusawa, T. and Gibson, W. M., Phys. Rev. Lett. 47, 1459 (1981).Google Scholar
5- Williams, A. A., Thornton, J. M. C., Macdonald, J. E., van Silfhout, R. G., van der Veen, J. F., Finney, M. S., Johnson, A. D. and Norris, C., Phys. Rev. B43, 5001 (1991).Google Scholar
6- Baribeau, J. -M., Pascual, R., Saimoto, S., Appl. Phys. Lett. 57, 1502 (1990).Google Scholar
7- Ourmazd, A. and Bean, J. C., Phys. Rev. Lett. 55, 765 (1985).Google Scholar
8- Lockwood, D. J., Rajan, K., Fenton, E. W., Baribeau, J. -M. and Denhoff, M. W. Solid State Commun. 61, 465 (1987).Google Scholar
9- LeGoues, F. K., Kesan, V. P. and Iyer, S. S., Phys Rev. Lett. 64, 40 (1990).Google Scholar
10- LeGoues, F. K., Kesan, V. P., Iyer, S. S., Tersoff, J. and Tromp, R., Phys Rev. Lett. 64, 2038 (1990).Google Scholar
11- Müller, E., Nissen, H. -U., Ospelt, M. and von Känel, H., Phys. Rev. Lett. 63, 1819 (1989).Google Scholar
12- Jesson, D. E., Pennycook, S. J. and Baribeau, J. -M., Phys. Rev. Lett. 66, 750 (1991).Google Scholar
13- Baribeau, J. M., Jackman, T. E., Maigné, P., Houghton, D. C. and Denhoff, M. W., J. Vac. Sci. Technol. A 5, 1898 (1987).Google Scholar
14- Baribeau, J. -M., Lockwood, D. J., Dharma-wardana, M. W. C., Rowell, N. L. and McCaffrey, J. P., Thin Solid Films 183 (1989).Google Scholar
15- Lockwood, D. J., SPIE Proc. 1336, 13 (1990).Google Scholar
16- Dharma-wardana, M. W. C., Aers, G. C., Lockwood, D. J. and Baribeau, J. -M., Phys. Rev. B 41, 5319 (1990).Google Scholar
17- Lockwood, D. J. and Baribeau, J. -M., in ‘Light Scattering in Semiconductors Structures and Superlattices’, Edited by Lockwood, D. J. and Young, J. F. (Plenum, New York, 1991).Google Scholar
18- Lockwood, D. J., Dharma-wardana, M. W. C., Baribeau, J. -M. and Houghton, D. C., Phys. Rev. B 35, 2243 (1987).Google Scholar
19- Spiller, E., Rosenbluth, A. E., Opt. Eng. 25, 954 (1986).Google Scholar
20- Baynes, K., Sham, T. E., Chen, J. M. and Yang, B. X. (to be published).Google Scholar
21- Oyanagi, H., Sakamoto, T., Sakamoto, K., Matsushita, T., Yao, T. and Ishiguro, T., J. Phys. Soc. Japan 57, 2086 (1988).Google Scholar
22- Woicik, J. C., Bouldin, C. E., Bell, M. I., Cross, J. O., Tweet, D. J., Swanson, B. D., Zhang, T. M., Sorensen, I. B., King, C. A., Hoyt, J. L., Pianetta, P. and Gibbons, J. F., Phys. Rev. B43, 2419 (1991).Google Scholar
23- Tyliszczak, T. and Hitchcock, A. P., Physica 158, 335 (1989).Google Scholar
24- Tyliszczak, T., Hitchcock, A. P. and Jackman, T. E., J. Vac. Sci. Technol. A8, 2020 (1990).Google Scholar
25- Baribeau, J. -M., Lockwood, D. J., Jackman, T. E., Aebi, P., Tyliszczak, T. and Hitchcock, A. P., Can. J. Phys. in press.Google Scholar
26- Aebi, P., Tyliszczak, T., Hitchcock, A. P., Jackman, T. E. and Baribeau, J. -M., J. Vac. Sci. Technol. in press.Google Scholar
27- Software available from TOLMAR Inc; Tyliszczak, T., Aebi, P., Hitchcock, A. P. and Jackman, T. E., unpublished.Google Scholar
28- Jackman, T. E., Baribeau, J. -M., Lockwood, D. J., Aebi, P., Tyliszczak, T. and Hitchcock, A. P., Phys. Rev B, (in preparation).Google Scholar