Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-19T02:58:58.888Z Has data issue: false hasContentIssue false

Interface Roughness Effects on Adhesion of Ta2N Films.

Published online by Cambridge University Press:  22 February 2011

N. R. Moody
Affiliation:
Sandia National Laboratories, Livermore, CA 94551-0969
S. Venkataraman
Affiliation:
University of Minnesota, Minneapolis, MN 55455
J. Nelson
Affiliation:
University of Minnesota, Minneapolis, MN 55455
W. Worobey
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185-0957
W. W. Gerberich
Affiliation:
University of Minnesota, Minneapolis, MN 55455
Get access

Abstract

In this study, we employed continuous microscratch testing to determine the effects of interface roughness on adhesion and fracture toughness of thin Ta2N films. These films were sputterdeposited on single crystal sapphire and polycrystal alumina substrates to a thickness of 0.5 μm. Comparison of the results showed that the interfacial fracture energy increased from 0.4 J/m2 for films on the single crystals to 1.5 J/m2 for films on the polycrystals with a corresponding increase in fracture toughness values. These results are consistent with crack deflection and interface roughness models and are useful for understanding adhesion and toughness on the submicron scale. The results also show that the continuous microscratch technique is a viable approach to determining adhesion and toughness of bi-material systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Evans, A. G. and Ruhle, M., MRS Bulletin, XV (10), 46 (1990).Google Scholar
2. Bibeau, W. E., Porter, W. A., and Parker, D. L., Proc. Electronic Comp. Conf., 28, 427 (1978).Google Scholar
3. Tremble, K. P. and Ruhle, M., in Metal-Ceramic Interfaces, edited by Ruhle, M., Evans, A. G., Ashby, M. F., and Hirth, J. P. (Pergammon Press, Oxford, 1990) p. 144.Google Scholar
4. Mittal, K. L., Electrocomponent Science and Technology, 3, 21 (1976).Google Scholar
5. Evans, A. G. and Hutchinson, J. W., Acta Metall., 37, 909 (1989).Google Scholar
6. Adams, J. R. and Kramer, D. K., Surface Science, 56, 482 (1976).Google Scholar
7. Au, C. L., Anderson, W. A., Schmitz, D. A., Flassayer, J. C., and Collins, F. M., J. Mater. Res., 5, 1224 (1990).Google Scholar
8. Doerner, M. F. and Nix, W. D., J. Mater. Res., 1, 601 (1986).Google Scholar
9. Nix, W. D., Metall. Trans. A, 20A, 2217 (1989).Google Scholar
10. Oliver, W. C. and Pharr, G. M., J. Mater. Res., 7, 1564 (1992).Google Scholar
11. Venkataraman, S. K., Kohlstedt, D. L., and Gerberich, W. W., J. Mater. Res., 8, 685 (1993).Google Scholar
12. Wu, T. W., Hwang, C., Lo, J., and Alexopoulos, P. S., Thin Solid Films, 166, 299 (1988).Google Scholar
13. Wu, T. W., J. Mater. Res, 6, 407, (1991).Google Scholar
14. Venkataraman, S. K., Kohstedt, D. L., and Gerberich, W. W., J. Mater. Res., 7, 1126 (1992).Google Scholar
15. Venkataraman, S. K., Kohlstedt, D. L., and Gerberich, W. W., Thin Solid Films, 223, 269 (1993).Google Scholar
16. Worobey, W., unpublished research, Sandia National Laboratories, Albuquerque, NM.Google Scholar
17. Rickersby, D. S., Surface and Coatings Technology, 36, 541 (1988).Google Scholar
18. Weaver, C., J. Vac. Sci. Technology, 12, 18 (1975).Google Scholar
19. Venkataraman, S. K., Kohlstedt, D. L., and Gerberich, W. W., presented at the 1993 MRS Spring Meeting, San Francisco, CA.Google Scholar
20. Evans, A. G., Ruhle, M., Dalgleish, B. J., and Charalambides, P. G., in Metal-Ceramic Interfaces, edited by Ruhle, M., Evans, A. G., Ashby, M. F., and Hirth, J. P. (Pergammon Press, Oxford, 1990) p. 345.Google Scholar
21. Dalgleish, B. J., Lu, M. C., and Evans, A. G., Acta Metall., 36, 2029 (1988).Google Scholar
22. Reimanis, I., Dalgleish, B. J., Brahy, M., Ruhle, M., and Evans, A. G., Acta Metall., 38, 2645 (1990).Google Scholar
23. Oh, T. S., Rodel, J., Cannon, R. M., and Ritchie, R. O., Acta Metall., 36, 2083 (1988).Google Scholar
24. Gerberich, W. W. and Wright, A. G., in Environmental Degradation of Engineering Materials in Hydrogen, edited by Louthan, M. R., McNitt, R. P., and Sisson, R. D. (VPI Press, Blacksburg, VA, 1981) p. 183.Google Scholar
25. Gell, M. and Smith, E., Acta Metall., 15, 253 (1967).Google Scholar