Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-23T07:08:13.007Z Has data issue: false hasContentIssue false

Interface Recombination in III/V Heterostructures Investigated Through the Power Dependence of Excitonic Photoluminescence

Published online by Cambridge University Press:  26 February 2011

M. MüLlenborn
Affiliation:
Department of Materials Science & Engineering, University of California at Los Angeles, CA 90024.
N. M. Haegel
Affiliation:
Department of Materials Science & Engineering, University of California at Los Angeles, CA 90024.
Get access

Abstract

Photoluminescence spectra of AlGaAs/GaAs heterostructures with layer thicknesses in the micrometer range show excitonic recombination peaks from the AlGaAs as well as the GaAs layer. Luminescence in the buried GaAs layer may be produced by charge carrier diffusion across the interface and/or photon recycling. We have monitored the luminescence intensity from both layers as a function of laser power in order to determine the dominant generation process in the GaAs layer. The ambi polar diffusion equation has been solved to derive the charge carrier distribution. Based on these data the relative intensities of the AlGaAs and the GaAs excitonic luminescence can be used to obtain information about the interface recombination in a nondestructive way. This characterization method has been applied to investigate the quality of GaAsP/GaAs interfaces as a function of increasing lattice mismatch and dislocation density.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Olson, J. M., Ahrenkiel, R. K., Dimlavy, D. J., Keyes, Brian, and Kibbler, A. E., Appl. Phys. Lett. 55, 1208 (1989).CrossRefGoogle Scholar
2. 't Hooft, G. W., Leys, M. R., and Roozeboom, F., Jpn. J. Appl. Phys. 24, L761 (1985).Google Scholar
3. Krahl, M., Bimberg, D., Bauer, R. K., Mars, D. E., and Miller, J. N., J. Appl. Phys. 67, 434 (1990).CrossRefGoogle Scholar
4. Timmons, M. L., Colpitts, T. S., Venkatasubramanian, R., Keyes, B. M., Dimlavy, D. J., and Ahrenkiel, R. K., Appl. Phys. Lett. 56, 1850 (1990).Google Scholar
5. Bradshaw, J. L., Choyke, W. J., Devaty, R. P., and Messham, R. L., J. Appl. Phys. 67, 1483 (1990).Google Scholar
6. Bradshaw, J. L., Devaty, R. P., Choyke, W. J., and Messham, R. L., Appl. Phys. Lett. 55, 165 (1989).Google Scholar
7. Williams, E. W. and Chapman, R. A., J. Appl. Phys. 38, 2547 (1967).Google Scholar
8. van Roosbroeck, W., J. Appl. Phys. 26, 380 (1955).Google Scholar
9. Bensaid, B., Raymond, F., Leroux, M., Vèrié, C., and Fofana, B., J. Appl. Phys. 66, 5542 (1989).CrossRefGoogle Scholar
10. Smith, L. M., Wolford, D. J., Venkatasubramanian, R., and Ghandhi, S. K. in Impurities, Defects and Diffusion in Semiconductors: Bulk and Layered Structures, edited by Wolford, D. J., Bernholc, J., and Haller, E. E. (Mater. Res. Soc. Proc. 163, Pittsburgh, PA 1989) pp. 95107.Google Scholar