Skip to main content Accessibility help
×
Home

Interface Recombination and Threshold Current in Grinsch-QW ALGaAs/GaAs Laser Diodes

  • K. Xie (a1), H. M. Kim (a1), C. R. Wie (a1), J. A. Varriano (a2) and G. W. Wicks (a2)...

Abstract

A series of Graded-Index Waveguide Separate-Confinement Heterostructure Quantum Well (GRINSCH-QW) laser diodes were grown by MBE at the systematically varied substrate temperatures. The threshold current of laser diodes were found to depend strongly on the growth temperature. The structure and electrical characteristics of the laser diodes were studied by double-crystal x-ray diffraction, I-V-T, C-V and deep level transient spectroscopy (DLTS). The interface recombination is found to be the dominant carrier transport process in the high threshold current laser diodes and is closely related to the presence of the high concentration of deep traps and interface states. In the low threshold current laser diodes, diffusion process is found to be the dominant carrier transport process.

Copyright

References

Hide All
1. Tsang, W. T., in “The Technology and Physics of Molecular Beam Epitaxy” ed. by Parker, E.H.C.-, (Plenum, New York) 1985, p. 467.
2. Tsang, W. T., Reinhar, F. K. and Ditzenberger, J. A., Appl. Phys. Lett. 36 118 (1980).
3. Wicks, G. W., Wang, W. I., Wood, C. E. C., Eastman, L. F. and Rathbun, L., J. Appl. Phys. 52 5792 (1981).
4. Weisbuch, C., Dingle, R., Petroff, P. M., Gossard, A. C. and Wiegmann, W., Appl. phys. Lett. 38 840 (1981).
5. Sun, Y. L., Fischer, R., Klein, M. V. and Morkoc, H., Thin Solid Films, 112 213 (1984).
6. Iwata, H., Yokoyama, H., Sugimoto, M., Hamao, N., and Onabe, K., Appl. Phys. Lett. 54 2427 (1989).
7. Petroff, P. M., Weisbuch, C., Dingle, R., Gossard, A. C. and Wiegmann, W., Appl. Phys. Lett. 38 965 (1981).
8. Duggan, G., Ralph, H. I. and Elliott, R. J., Solid State Commun. 56 17 (1985)
9. Yu, L. S. and Wang, C. D., IEEE Trans. Electron Devices, ED–30 326 (1983).
10. Petroff, P. M., Miller, R. C., Gossard, A. C. and Wiegmann, W., Appl. Phys. Lett. 44 217 (1984).
11. Chand, Naresh and Chu, S. N. G., Appl. Phys. Lett. 57 1796 (1990).
12. Yamanaka, K., Naritsuka, S., Kanamoto, K., Minara, M. and Ishil, M., J. Appl. Phys. 61 5062 (1987).
13. Blood, P. and Harris, J. J., J. Appl. Phys. 56 993 (1984).
14. McAfee, S. R., Lang, D. V. and Tsang, W. T., Appl. Phys. Lett. 40 520 (1982).
15. Yamanaka, K., Naritsuka, S., Manon, M., Yuasa, T., Nomura, Y., Mihara, M. and Ishi, M., I. Vac. Sci. Technol. B. 2 229 (1984).
16. Sze, S. M., Physics of Semiconductor Devices 2nd ed. (Wiley, New York 1981);
Chen, J. F. and Wie, C. R., J. Electron. Mater. 17 501 (1988).
17. Miller, W. A. and Olsen, L. C., IEEE Trans. Electron Devices ED–31 654 (1984).
18. Tan, K. L., Lundstrom, M. S. and Melloch, M. R., Appl. Phys. Lett. 48 428 (1986).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed