Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-19T03:59:10.793Z Has data issue: false hasContentIssue false

Interdiffusion Enhancement in AIGaAs/GaAs Superlattices in the Presence of Carbon

Published online by Cambridge University Press:  21 February 2011

Zul Jamal
Affiliation:
School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Perak Branch Campus, 31750 Tronoh, Perak Darul Ridzuan, Malaysia
P J Goodhew
Affiliation:
Department of Materials Science and Engineering, University of Liverpool, PO Box 147, Liverpool, L69 3BX, UK
Get access

Abstract

The mechanism of C diffusion through short period GaAs-A1GaAs superlattices has been investigated. The diffusion coefficient of C and the interdiffusion rates of the Ga and Al atoms were estimated by analysing, respectively, SIMS data and TEM image intensity traces. The TEM and SIMS results shows that C diffuses with an activation energy of about 2.8eV in the range 850-1000°C and that interdiffusion of Al and Ga on the group III lattice is enhanced by a factor of 5 or more when the C concentration exceeds about 5 × 1019cm−3.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Konogai, M., Yamada, T., Akatsuka, T., Saito, K., Tokomitsu, E. and Takahashi, K. (1989) J. Crystal Growth, 98. 167.CrossRefGoogle Scholar
2. Hanna, M.C. Majerfeld, A. and Szmyd, D.M. (1991) Appl. Phys. Lett., 59, 2001.CrossRefGoogle Scholar
3. Jamal, Z. and Goodhew, P.J. (1993) Proceedings of MRS Fall Meeeting, 282, 145.CrossRefGoogle Scholar
4. Rao, E.V.K., Thibierge, H., Alexandre, F. and Azoulay, R. (1985) Appl. Phys. Lett., 46, 867.CrossRefGoogle Scholar
5. Petroff, P.M. (1977) J. Vac. Sci. Technol., 14, 973.CrossRefGoogle Scholar
6. Abernathy, C.R., Pearton, S.J., Manasreh, M.O., Fischer, D.W. and Talwar, D.N. (1990) Appl. Phys. Lett., 57, 294.CrossRefGoogle Scholar
7. Jamal, Z. PhD thesis, University of Liverpool, UK, 1993.Google Scholar
8. Gosele, U. and Tan, T.Y.(1988) Defect and Diffusion Forum, 59, 1.CrossRefGoogle Scholar
9. Ashwin, M.J., Davidson, B.R, Woodhouse, K., Newman, R.C., Bullough, T.J., Joyce, T.B., Nicklin, R. and Bradley, R.R. (1993), Semicond. Sci. Technol., 8, 625 CrossRefGoogle Scholar
10. Davidson, B.R., Newman, R.C., Bullough, T.J. and Joyce, T.B. (1993) Semicond. Sci. Technol, in press.Google Scholar
11. Davidson, B.R., Newman, R.C., Bullough, T.J. and Joyce, T.B. (1993) Phys. Rev. B, in press.Google Scholar
12. Chiu, T.H., Cunningham, J.E., Ditzenberger, J.A., Jan, W.Y. and Chu, S.N.G. (1991) J.Crystal Growth, 111, 274.CrossRefGoogle Scholar
13. Cunningham, B.T., Guido, L.J., Baker, J.E., Major, J.S., Holonyak, N. Jr. and Stillman, G.E. (1989) Appl. Phys. Lett., 55, 687.CrossRefGoogle Scholar
14. Kuech, T.F., Tischler, M.A., Wang, P.J., Scilla, G., Potemski, R. and Cardone, F. (1988) Appl. Phys. Lett., 53, 1317.CrossRefGoogle Scholar
15. Kobayashi, N., Makimato, T. and Horikoshi, Y. (1987) Appl. Phys. Lett., 50, 1435.CrossRefGoogle Scholar