Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-20T05:10:07.528Z Has data issue: false hasContentIssue false

Interdiffusion During the Growth of Fe on Ag/Fe(110)

Published online by Cambridge University Press:  21 February 2011

R. Persaud
Affiliation:
Department of Physics & Laboratory for Surface Modification, Rutgers University, POB 849, Piscataway NJ 08855 USA, rpersaud@physics.rutgers.edu
H. Noro
Affiliation:
R & D Division, NKK Corporation, Kawasaki 210, Japan
J. A. Venables
Affiliation:
Dept. of Physics & Astronomy, Arizona State University, Tempe AZ 85287
Get access

Abstract

We have previously shown the growth mode of Ag on Fe(110) to be Stranski-Krastanov with Ag islands growing on top of two intermediate Ag layers. In the present studies, Fe was deposited on thin annealed Ag layers on Fe(110). The growth and interdiffusion of these layers were monitored by reflection high energy electron diffraction (RHEED) and Auger electron spectroscopy (AES). For deposition at room temperature (RT), Fe islands grow in a (HO) orientation on the Ag/Fe(110) substrate. These islands form facets similar to those obtained at an equivalent coverage for the Fe/Fe(110) system. AES indicates that there is some intermixing between the deposited Fe atoms and underlying Ag layers at RT. During annealing, or for deposition at 250°C, Ag floats to the top while the Fe islands flatten to form layers at the Ag/Fe(110) interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Johnson, M.; Science, 260 320 (1993).Google Scholar
2 Falicov, L.M.; Phys. Today 45 (10) 46 (1992).Google Scholar
3 Gradmann, U. in Handbook of Magnetic Materials Vol.7 (1993) 1.Google Scholar
4 Noro, H., Persaud, R., and Venables, J.A.; Vacuum 46 (1995) 1173.Google Scholar
5 Persaud, R., Noro, H., Azim, M., Milne, R. H., and Venables, J.A.; Scan. Microsc. 8 (1994) 803.Google Scholar
6 Noro, H., Persaud, R. and Venables, J.A.; Surf. Sci. in press.Google Scholar
7 Venables, J.A., Li, Y., Hembree, G.G., Noro, H. and Persaud, R.; J. Phys. D. In pressGoogle Scholar
8 Gutierrez., C.J, Mayer, S.H., and Walker, J.C.; J. Magnetism & Magn. Mat. 80 (1989) 299.Google Scholar
9 Synman, H.C., and Olsen, G.H.; J. Appl. Phys. 44 (1973) 888.Google Scholar
10 Ehrlich, G., and Hudda, F.G.; J. Chem. Phys. 44 (1966) 1039.Google Scholar
11 Schwoebel, R.L., and Shipsey, E.J.; J. Appl. Phys. 37 (1966) 3682.Google Scholar
12 Bott, M., Michely, Th, and Comsa, G.; Surf. Sci. 272 (1992) 161.Google Scholar
13 Stroscio, J.A., Pierce, D. T., and Dragoset, R.A.; Phys. Rev. Lett. 70 (1993) 3615.Google Scholar
14 AJbrecht, M., Fritze, H., and Gradmann, U.; Surf. Sci. 294 (1993) 1.Google Scholar
15 Bauer, E., and Van der Merwe, J. H.; Phys. Rev. B 33 (1986) 3657.Google Scholar
16 Chambliss, D., Johnson, K. E., Kalki, K., Chiang, S., and Wilson, R.J.; Mat. Res. Soc. 313 (1993) 713.Google Scholar
17 Meyer, J.A., and Behm, R.J.; Surf. Sci. 322 (1995) L275.Google Scholar