Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-30T12:41:33.819Z Has data issue: false hasContentIssue false

Interatomic Interactions for BCC Metals Based on the Low Order Moments of the Density of States

Published online by Cambridge University Press:  26 February 2011

Stephen M. Foiles*
Affiliation:
Theoretical Division, Sandia National Laboratories, Livermore, CA 94551
Get access

Abstract

A model of the energetics of bcc transition metals based on the low-order moments of the electronic density of states is presented. The new feature of the model is an additional energy term related to the fourth moment of the density of states. This term reflects the coarse shape of the density of states. The model is tested by the computation of point defect properties, phonon dispersions, structural energy differences and surface properties. The results are compared to experiment, ab-initio calculations and other model interatomic potentials. The results indicate that the inclusion of the fourth moment term in the energy does not significantly improve the description of properties of the bulk bcc metals. However, the fourth moment term substantially improves the description of large deviations from the bcc bulk such as surfaces and alternative crystal structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Daw, M. S. and Baskes, M. I., Phys. Rev. B29, 6443 (1984).CrossRefGoogle Scholar
2. Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B33, 7983 (1986); S. M. Foiles, in “Structure and Properties of Surfaces and Interfaces”, edited by A. Gonis and G. M. Stocks, (Plenum Press, New York, in press).Google Scholar
3. Finnis, M. W. and Sinclair, J. E., Philos, Mag. A50, 45 (1984).Google Scholar
4. Ackland, G. J. and Thetford, R., Philos. Mag. A56, 15 (1987).CrossRefGoogle Scholar
5. Adams, J. B. and Foiles, S. M., Phys. Rev. B41, 3316 (1990).Google Scholar
6. Johnson, R. A. and Oh, D. J., J. Mater. Research 4, 1195 (1989).Google Scholar
7. Carlsson, A. E., in “Solid State Physics”, edited by Ehremreich, H., Seitz, H. and Turnbull, D., vol. 43, (Academic Press, New York, 1990).Google Scholar
8. Carlsson, A. E., Phys. Rev. B44, 6590 (1991).Google Scholar
9. Moriarty, J. A., Phys. Rev. B38, 3199 (1988); J. A. Moriarty, Phys. Rev. B42, 1609 (1990); J. A. Moriarty and R. B. Phillips, Phys. Rev. Lett. 66, 3036 (1991).CrossRefGoogle Scholar
10. Jacobsen, K. W., Norskov, J. K., and Puska, M. J., Phys. Rev. B35, 7423 (1987).CrossRefGoogle Scholar
11. Daw, M. S., Phys. Rev. B39, 7441 (1989).Google Scholar
12. Daw, M. S., Phillips, P. B., and Foiles, S. M., to be published.Google Scholar
13. Foiles, S. M. and Daw, M. S., Phys. Rev. B38, 12643 (1988); S. M. Foiles and J. B. Adams, Phys. Rev. B40, 5909 (1989).Google Scholar
14. Rose, J. H., Smith, J. R., Guinea, F., and Ferrante, J., Phys. Rev. B29, 2963 (1984).Google Scholar
15. Skriver, H. L., Phys. Rev. B31, 1909 (1985).Google Scholar
16. Powell, B. M., Martell, P., and Woods, A. D. B., Can. J. Phys. 55, 1601 (1977).Google Scholar
17. Chen, S. H. and Brockhouse, B. N., Solid St. Comm. 2, 73 (1964).CrossRefGoogle Scholar
18. Suezawa, M. and Kimura, H., Philos. Mag. 28,901 (1973); R. Ziegler and H. E. Schaefer, Mater. Sci. Forum 15-18, 145 (1987); K. Maier, M. Peo, B. Saile, H. E. Schaefer, and A. Seeger, Philos. Mag. A40, 701 (1979); K. D. Rasch, R. W. Siegel, and H. Schultz, Philos. Mag. A41, 91 (1980).Google Scholar
19. Maier, K., Mehrer, H., and Rein, G., Z Metallk. 70, 271 (1979); J. N. Mundy, S. J. Rothman, N. Q. Lam, H. A. Hoff, and L. J. Nowicki, Phys. Rev. B 18, 6566 (1978); R. E. Pawel, and T. S. Lundy, Acta Metall. 17, 979 (1969).Google Scholar
20. Johnson, R. A., Phys. Rev. 134, A 1329 (1964).Google Scholar
21. Rebonato, R., Welch, D. O., Hatcher, R. D., and Billelo, J. C., Philos. Mag. A55, 655 (1987).CrossRefGoogle Scholar
22. Young, F. W. Jr., J. Nucl. Mater. 69/70, 310 (1978).Google Scholar
23. Sinha, A. K., Prog. in Mater. Sci. 15, 79 (1972).Google Scholar
24. Morcom, W. R., Worrell, W. L., Sell, Hz. G., and Kaplan, H. I., Metallurgical Transactions 5, 155 (1974).Google Scholar
25. Granqvist, C. G., Milanowski, G. J. and Buhrman, R. A., Physics Letters 54A, 245 (1975).Google Scholar
26. Stewart, G. R., Newkirk, L. R. and Valencia, F. A., Phys. Rev. B21, 5055 (1980).Google Scholar
27. Phillips, R. B., Ph.D. Thesis, Washington University.Google Scholar
28. Smith, R. J., Hennessy, C., Kim, M. W., Whang, C. N., Worthington, M., and Mingde, Xu, Phys. Rev. Lett. 58, 702 (1987).Google Scholar
29. Hove, M. A. Van and Tong, S. Y., Surf. Sci. 54, 91 (1976).Google Scholar
30. Clarke, L. J., Surf. Sci. 91, 131 (1980).Google Scholar
31. March, F. S., Debe, M. K., and King, D. A., J. Phys. C13, 2799 (1980); R. Feder and J. Kirschner, Surf. Sci. 103, 75 (1981).Google Scholar
32. Wang, X. W., Chan, C. T., Ho, K. M., and Weber, W., Phys. Rev. Lett. 60, 2066 (1988).Google Scholar
33. Chan, C. T. and Louie, S. G., Phys. Rev. B33, 2861 (1986).CrossRefGoogle Scholar
34. Fu, C. L. and Freeman, A. J., Phys. Rev. B37, 2685 (1988); D. Singh and H. Krakauer, Phys. Rev. B37, 3999 (1988).Google Scholar
35. Luo, J. S. and Legrand, B., Phys. Rev. B38, 1728 (1988).Google Scholar