Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T21:21:41.824Z Has data issue: false hasContentIssue false

Interactions Between Metallization or Diffusion Layers and Doped Silicon Plugs in Deep-Submicron Contact-Holes

Published online by Cambridge University Press:  25 February 2011

John M. Drynan
Affiliation:
NEC Corporation, Microelectronics Research Laboratories, ULSI Research Laboratory 1120 Shimokuzawa, Sagamihara, Kanagawa 229 Japan
Hiromitsu Hada
Affiliation:
NEC Corporation, Microelectronics Research Laboratories, ULSI Research Laboratory 1120 Shimokuzawa, Sagamihara, Kanagawa 229 Japan
Takemitsu Kunio
Affiliation:
NEC Corporation, Microelectronics Research Laboratories, ULSI Research Laboratory 1120 Shimokuzawa, Sagamihara, Kanagawa 229 Japan
Get access

Abstract

Phosphorus-doped polycrystalline silicon used to plug the high-aspect-ratio, deep-submicron contact-holes connecting suicide metallization layers and substrate diffusion or silicide/polycide layers used in prototype 64 and 256 mega-bit DRAM devices acts as a dopant source at the silicidc/plug and plug/substrate interfaces during thermal processing. This outdiffusion of phosphorus from the contact-hole plug can lead to increased contact resistance which degrades device reliability and performance. Non-doped silicon, titanium, and titanium nitride films have been investigated as phosphorus outdiffusion buffer or barrier layers which reduce or prevent interaction between the doped contact-hole plug and surrounding conduction layers. Non-doped silicon diffusion buffer layers alternately deposited with in situ-doped silicon dopant source layers have been found to be effective in reducing outdiffusion into the substrate whereas a TiN diffusion barrier layer sputter deposited between the plug and WSix metallization prevents dopant outdiffusion into the WSix layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stall, R. A., Wolak, E., and Zawadzki, P., in Advanced Metallization for ULSI Applications, edited by Rana, V., Joshi, R., and Ohdowari, I. (Mater. Res. Soc. Conf. Proc. ULSI-VII, Pittsburgh, PA 1992) pp. 115120.Google Scholar
2. Yamazaki, O., Fukushima, N., Nakamura, K., Hattori, H., Onishi, S., Uda, K., and Sakiyama, K., in Advanced Metallization for ULSI Applications, edited by Rana, V., Joshi, R., and Ohdowari, I. (Mater. Res. Soc. Conf. Proc. ULSI-VII, Pittsburgh, PA 1992) pp. 299304.Google Scholar
3. Yokoyama, N., Hinode, K., and Homma, Y., J. Electrochem. Soc. 138 (1), 190 (1991).CrossRefGoogle Scholar
4. Drynan, John M. and Kikkawa, T., in Proceedings of the 7th International IEEE VLSI Multilevel Interconnection Conference, (IEEE, New Jersey, 1990), p. 441.Google Scholar
5. Drosd, R. and Washbum, J., J. Appl. Phys. 53 (1), 397 (1982).CrossRefGoogle Scholar
6. Yoon, Hyung Sup, Park, Chul Soon, and Park, Sin-Chong, J. Vac. Sci. Technol. A 4 (6), 3095 (1986).Google Scholar
7. Drynan, John M. and Kikkawa, T., Appl. Phys. Lett. 58 (6), 610 (1991).CrossRefGoogle Scholar
8. Bisaro, R., Magarino, J., Proust, N., and Zellama, K., J. Appl. Phys. 59 (4), 1167 (1986).Google Scholar
9. Torres, J., Thomas, O., Jourdain, D., Madar, R., Perio, A., and Senateur, J. P., J. Appl. Phys. 63 (3), 732 (1988).Google Scholar
10. Pan, P., Hsieh, N., Geipel, H. J. Jr, and Slusser, G. J., J. Appl. Phys. 53 (4), 3059 (1982).CrossRefGoogle Scholar
11. Tsai, M. Y., d'Heurle, F. M., Petersson, C. S., and Johnson, R.W., J. Appl. Phys. 52 (8), 5350 (1981).Google Scholar
12. Murarka, S. P., Read, M. H., and Chang, C. C., J. Appl. Phys. 52 (12), 7450 (1981).Google Scholar
13. d'Heurle, F. M., Petersson, C. S., and Tsai, M. Y., J. Appl. Phys. 51 (11), 5976 (1980).Google Scholar
14. Probst, V., Schaber, H., Mitwalsky, A., Kabza, H., Hoffmann, B., Maex, K., and Van denhove, L., J. Appl. Phys. 70 (2). 693 (1991).Google Scholar
15. Nicolet, M. -A., Thin Solid Films, 52, 415 (1978).Google Scholar
16. Wittmer, M., J. Vac. Sci. Technol. A 2 (2), 273 (1984).Google Scholar
17. Wittmer, M., J. Vac. Sci. Technol. A 3 (4), 1797 (1985).CrossRefGoogle Scholar
18. Kikkwawa, T., Aoki, H., Ikawa, E., and Drynan, J., in 1991 International Electron Devices Meeting Technical Digest, (IEEE, New Jersey, 1991), p. 281.Google Scholar
19. Murarka, S. P., Suicides for VLSI Applications, (Academic Press, Orlando, 1983) p. 75.Google Scholar
20. Tu, K. N. and Mayer, J. W., in Thin Films-Interdiffusion and Reactions, edited by Poate, J. M., Tu, K. N., and Mayer, J. W. (John Wiley and Sons, New York, 1978) pp. 359406.Google Scholar
21. Thuillard, M., Tran, L. T., Nieh, C. W., and Nicolet, M -A., J. Appl. Phys. 65 (6), 2553 (1989).Google Scholar
22. Shih, D. -Y., Chang, C. -A., Paraszczak, J., Nunes, S., and Cataldo, J., J. Appl. Phys. 70 (6), 3052 (1991).Google Scholar
23. Olowolafe, J. O., Li, J., and Mayer, J. W., J. Appl. Phys. 68 (12), 6207 (1990).Google Scholar
24. Wang, S. -Q., Raaijmakers, I., Burrow, B. J., Suthar, S., Redkar, S., and Kim, K. -B., J. Appl. Phys. 68 (10), 5176 (1990).Google Scholar
25. Chang, C. -A. and Hu, C. -K., Appl. Phys. Lett. 57 (6), 617 (1990).Google Scholar
26. Sinke, W., Frijlink, G. P. A., and Saris, F. W., Appl. Phys. Lett. 47 (5), 471 (1985).Google Scholar