Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T11:29:41.196Z Has data issue: false hasContentIssue false

Interaction of Nitrogen With 6H-SiC Surfaces

Published online by Cambridge University Press:  10 February 2011

V. Van Elsbergen
Affiliation:
Laboratorium für Festkörperphysik, Gerhard-Mercator-Universität Duisburg, D-47048 Duisburg, Germany
M. Rohleder
Affiliation:
Laboratorium für Festkörperphysik, Gerhard-Mercator-Universität Duisburg, D-47048 Duisburg, Germany
W. Mönch
Affiliation:
Laboratorium für Festkörperphysik, Gerhard-Mercator-Universität Duisburg, D-47048 Duisburg, Germany
Get access

Abstract

The interaction of nitrogen with 6H-SiC surfaces with different orientation and composition ranging from Si-rich to graphitized was investigated by use of X-ray and ultraviolet photoemission spectroscopy (XPS, UPS). The samples were cleaned and their surface composition was tuned by heating them in a Si flux at different temperatures or by annealing. Nitrogen exposures were performed using a RF plasma source operated at 13.56 MHz. Two different nitridation mechanisms can be distinguished by XPS. While anion exchange occurs at bulk-truncated SiC surfaces diffusion will control the nitrogen uptake of Si-rich samples. After nitridation, UPS spectra of bulk–truncated surfaces display characteristic valence-band structures of Si3N4. The thickness of the nitride layer amounts to approximately 9–12 Å. Thicker silicon nitride films on SiC are obtained by rising the sample temperature during nitrogen exposures or by deposition and subsequent nitridation of thin Si overlayers on SiC surfaces. The nitrogen uptake of graphitized samples is comparable to that of bulk-truncated surfaces. Our photoemission spectroscopy results prove that surface graphite is partly removed by N and the UPS spectra point to the formation of silicon nitride. In addition, C-N bonds exist but the exact bonding configuration cannot be resolved.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Unal, O., Petrovic, J. J., and Mitchell, T. E., J. Mater. Res. 7, 136 (1992).Google Scholar
2. Unal, O. and Mitchell, T. E., J. Mater. Res. 7, 1445 (1992).Google Scholar
3. Berberich, S., Godignon, P., Millan, J., Planson, D., Hartnagel, H. L., and Senes, A., Materials Science Forum 264–268, 881 (1998).Google Scholar
4. Chaudhry, M. Iqbal and Berry, W., J. Mater. Res. 4, 1491 (1989).Google Scholar
5. Meo, R. C. De, Wang, T. K., Chow, T. P., Brown, D. M., and Matus, L. G., J. Electrochem. Soc. 141, 881 (1994).Google Scholar
6. Bermudez, V. M., Surf. Sci. 276, 59 (1992).Google Scholar
7. Laidani, N., Bonelli, M., Miotello, A., Guzman, L., Calliari, L., Elena, M., Bertoncello, R., Glisenti, A., Capelletti, R., and Ossi, P., J. Appl. Phys. 74, 2013 (1993).Google Scholar
8. Miyagawa, S., Nakao, S., Saitoh, K., Ikeyama, M., Niwa, H., Tanemura, S., Miyagawa, Y., and Baba, K., J. Appl. Phys. 78, 7018 (1995).Google Scholar
9. Sitar, Z., Smith, L. L., and Davis, R. F., J. Crystal Growth 141, 11 (1994).Google Scholar
10. Elsbergen, V. van, Kampen, T. U., and Mönch, W., Surf. Sci. 365, 443 (1996).Google Scholar
11. Elsbergen, V. van, Rohleder, M., and Mönch, W., Appl. Surf. Sci. (1998) in press.Google Scholar
12. Seah, M. P. and Dench, W. A., Surf. Interf. Analys. 1, 2 (1979).Google Scholar
13. Yeh, J. J. and Lindau, I., Atomic and Nuclear Data Tables 32, 1 (1985).Google Scholar
14. Didziulis, S. V., Lince, J. R., Fleischauer, P. D., and Yarmoff, J. A., Inorg. Chem. 30, 672 (1991).Google Scholar
15. Kärcher, R., Ley, L., and Johnson, R. L., Phys. Rev. B 30, 1896 (1984).Google Scholar
16. Taylor, J. A., Lancaster, G. M., and Rabalais, J. W., J. Electron. Spectrosc. Relat. Phenom. 13, 435 (1978).Google Scholar
17. Robertson, J., Phil. Mag. B 63, 47 (1991).Google Scholar
18. Ermolieff, A., Bernard, P., Marthan, S., and Costa, J. Camargo da, J. Appl. Phys. 60, 3162 (1986).Google Scholar
19. Marton, D., Boyd, K. J., and Rabalais, J. W., Int. J. Mod. Phys. B 27, 3527 (1995).Google Scholar
20. Johansson, L. I., Owman, F., and Mõrtensson, P., Phys. Rev. B 53, 13793 (1996).Google Scholar
21. Troost, D., Baier, H.-U., Berger, A., and Mönch, W., Surf. Sci. 242, 324 (1991).Google Scholar
22. Gemmeren, T. van, Salmagne, S. Rossi, and Mönch, W., Appl. Surf. Sci. 65/66, 625 (1993).Google Scholar
23. Baek, D. H., Kang, H., and Chung, J. W., Phys. Rev. B 49, 2651 (1994).Google Scholar
24. Boyd, K. J., Marton, D., Todorov, S. S., All-Bayati, A. H:, Kulik, J., Zuhr, R. A., and Rabalais, J. W., J. Vac. Sci. Technol. A 13, 2110 (1995).Google Scholar
25. Duan, Y., Zhang, K., and Xie, X., phys. stat. sol. (b) 200, 499 (1997).Google Scholar