Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-17T05:04:50.221Z Has data issue: false hasContentIssue false

In-Situ X-ray Diffraction Study of Lithium Intercalation in Nanostructured Anatase Titanium dioxide

Published online by Cambridge University Press:  09 August 2011

R. Van de Krol
Affiliation:
Delft Interfaculty Research Center: Renewable Energy, Delft University of Technology Laboratory for Inorganic Chemistry, Julianalaan 136, 2628 BL Delft, The Netherlands
E. A. Meulenkamp
Affiliation:
Philips Research Laboratories, Prof Holstlaan 4, 5656 AA Eindhoven, The Netherlands
A. Goossens
Affiliation:
Delft Interfaculty Research Center: Renewable Energy, Delft University of Technology Laboratory for Inorganic Chemistry, Julianalaan 136, 2628 BL Delft, The Netherlands
J. Schoonman
Affiliation:
Delft Interfaculty Research Center: Renewable Energy, Delft University of Technology Laboratory for Inorganic Chemistry, Julianalaan 136, 2628 BL Delft, The Netherlands
Get access

Abstract

Electrochemical lithium intercalation in nanostructured anatase TiO2 is investigated with in-situ X-ray diffraction. A complete and reversible phase transformation from tetragonal anatase TiO2 to orthorhombic anatase Li0.5TiO2 is observed. The difference of the XRD spectra before and after insertion can be fitted with the lattice parameters of the two phases as fit parameters. The maximum amount of lithium that can be dissolved in anatase TiO2 before the phase transformation occurs is found to be very small.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature

1. Huang, S. Y., Kavan, L., Exnar, I., and Grdtzel, M., J. Electrochem. Soc., 142, L142 (1995).Google Scholar
2. Hagfeldt, A., Vlachopoulos, N., and Gritzel, M., J. Electrochem. Soc., 141, L82 (1994).Google Scholar
3. O'Regan, B., Moser, J., Anderson, M., and Gri.tzel, M., J. Phys. Chem., 94, 8720 (1990).Google Scholar
4. Meulenkamp, E. A., J. Electrochem. Soc., 145, 2759 (1998).Google Scholar
5. Cava, R. J., Murphy, D. W., Zahurak, S., Santoro, A., and Roth, R. S., J. Solid State Chem., 53, 64 (1984).Google Scholar
6. Zachau-Christiansen, B., West, K., Jacobsen, T., and Atlung, S., Solid State Ionics, 28–30, 1176 (1988).Google Scholar