Skip to main content Accessibility help
×
Home

In-Situ TEM Study of Plastic Stress Relaxation Mechanisms and Interface Effects in Metallic Films

  • Marc Legros (a1), Gerhard Dehm (a2) and T. John Balk (a3)

Abstract

To investigate the origin of the high strength of thin films, in-situ cross-sectional TEM deformation experiments have been performed on several metallic films attached to rigid substrates. Thermal cycles, comparable to those performed using laser reflectometry, were applied to thin foils inside the TEM and dislocation motion was recorded dynamically on video. These observations can be directly compared to the current models of dislocation hardening in thin films. As expected, the role of interfaces is crucial, but, depending on their nature, they can attract or repel dislocations. When the film/interface holds off dislocations, experimental values of film stress match those predicted by the Nix-Freund model. In contrast, the attracting case leads to higher stresses that are not explained by this model. Two possible hardening scenarios are explored here. The first one assumes that the dislocation/interface attraction reduces dislocation mobility and thus increases the yield stress of the film. The second one focuses on the lack of dislocation nucleation processes in the case of attracting interfaces, even though a few sources have been observed in-situ.

Copyright

References

Hide All
1. Freund, L.B., J. Appl. Mech., 54 553 (1987).
2. Nix, W.D., Metall. Trans. A, 20A 22172245 (1989).
3. Matthews, J.W. and Blakeslee, A.E., Journal of Crystal Growth, 29 273280 (1975).
4. Keller, R.-M., Baker, S.P., and Arzt, E., J. Mater. Res., 13 13071317 (1998).
5. Venkatraman, R. and Bravman, J.C., J. Mater. Res., 7 2040 (1992).
6. Venkatraman, R., Bravman, J.C., Nix, W.D., Davies, P.W., Flinn, P.A., and Fraser, D.B., J. Electron. Mater., 19 12311237 (1990).
7. Thompson, C.V., J. Mater. Res., 8 237238 (1993).
8. Dehm, G., Balk, T.J., Edongue, H., and Arzt, E., Microelectronic Engineering, 70 412 (2003).
9. Legros, M., Dehm, G., Balk, T.J., Arzt, E., Bostrom, O., Gergaud, P., Thomas, O., and Kaouache, B.. Plasticity-related phenomena in metallic films on substrates. in Multiscale Phenomena in Materials Experiments and Modeling Related to Mechanical Behavior. (2003). San Francisco, Vol. 779, pp. 6374.
10. Kuan, T.S. and Murakami, M., Metall. Trans. A, 13 383391 (1982).
11. Müllner, P. and Arzt, E.. Observation of dislocation disappearance in aluminum thin films and consequences for thin film properties. in Thin films - Stresse and mechanical properties. (1998). Boston, MA: Mat. Res. Soc. Symp. Proc. 505, Warrendale, PA, Vol. 505, pp. 149–54.
12. Dehm, G., Weiss, D., and Arzt, E., Materials Science and Engineering A, 309-310 468 (2001).
13. Legros, M., Hemker, K.J., Gouldstone, A., Suresh, S., Keller-Flaig, R.M., and Arzt, E., Acta Materialia, 50 3435 (2002).
14. Ovecoglu, M.L., Doerner, M.F., and Nix, W.D., Acta Metallurgica, 35 2947 (1987).
15. Kaouache, B., Gergaud, P., Thomas, O., Bostrom, O., and Legros, M., Microelectronic Engineering, 70 447 (2003).
16. Dehm, G., Inkson, B.J., Balk, T.J., Wagner, T., and Arzt, E.. Influence of film/substrate interface structure on plasticity in metal films. in Dislocations and deformation mechanisms in thin films and small structures. (2001). San Francisco: Mat. Res. Soc. Symp. Proc., Vol. 673, pp. 112.
17. Keller, R.-M., Sigle, W., Baker, S.P., Kraft, O., and Arzt, E.. In situ TEM investigation during thermal cycling of thin copper films. in Mat. Res. Soc. Symp. Proc. (1997). Boston, MA, Vol. 436, pp. 221226.
18. Gao, H., Zhang, L., and Baker, S.P., Journal of the Mechanics and Physics of Solids, 50 21692202 (2002).
19. Blanckenhagen, B. von, Gumbsch, P., and Arzt, E., Modelling and Simulation in Materials Science and Engineering, 9 157169 (2001).
20. Greer, J.R., Oliver, W.C., and Nix, W.D., Acta Materialia, 53 1821 (2005).
21. Swygenhoven, H. Van, Science, 296 6667 (2002).
22. Friedman, L.H. and Chrzan, D.C., Philosophical Magazine A, 77 11851204 (1998).
23. Owusu-Boahen, K. and King, A.H., Acta Materialia, 49 237247 (2001).
24. Lucadamo, G. and Medlin, D.L., Acta Materialia, 50 30453055 (2002).
25. Gao, H., Zhang, L., Nix, W.D., Thompson, C.V., and Arzt, E., Acta Materialia, 47 2865 (1999).
26. Shen, Y.-L. and Suresh, S., Acta Met. Mat., 43 39153926 (1995).
27. Dehm, G., Scheu, C., Ruhle, M., and Raj, R., Acta Materialia, 46 759772 (1998).
28. Couret, A., Crestou, J., Farenc, S., Molenat, G., Clement, N., Coujou, A., and Caillard, D., Microscopy Microanalysis Microstructures, 4 153170 (1993).
29. Legros, M., Hemker, K.J., Gouldstone, A., Suresh, S., Keller-Flaig, R.-M., and Arzt, E., Acta Materialia, 50 34353452 (2002).
30. Kaouache, B., Propriétés mécaniques et microstructures de films minces métalliques, in Laboratoire de Physique des Matériaux. 2002, Université Nancy I: Nancy.
31. Balk, T.J., Dehm, G., and Arzt, E., Acta Materialia, 51 4471 (2003).

In-Situ TEM Study of Plastic Stress Relaxation Mechanisms and Interface Effects in Metallic Films

  • Marc Legros (a1), Gerhard Dehm (a2) and T. John Balk (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.