Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-27T03:31:25.757Z Has data issue: false hasContentIssue false

In-Situ Study of the Optoelectronic Properties of Very thin P-TYPE μc-Si:H Films and the Potential Profile at the p-(μc-Si:H)/i-(a-Si:H) Interface

Published online by Cambridge University Press:  10 February 2011

S. Hamma
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 CNRS), Ecole Polytechnique, 91128 Palaiseau, Cedex, France
P. Rocai Cabarrocas
Affiliation:
Laboratoire de Physique des Interfaces et des Couches Minces (UMR 7647 CNRS), Ecole Polytechnique, 91128 Palaiseau, Cedex, France
Get access

Abstract

In-situ UV-visible ellipsometry and Kelvin probe measurements were performed to study the growth of boron-doped microcrystalline silicon (μc-Si:H) thin films and the band profiling at the p- (μc-Si:H)/i-(a-Si:H) interface. The in-situ UV-visible spectroscopic ellipsometry measurements, combined with dark conductivity measurements, performed at different stages of the growth show that p-type μc-Si:H formation can be achieved for a film thickness below 10 nm. These analyses also reveal that both the optical absorption, and the dark conductivity do not change significantly for a crystalline volume fraction above 50%. Moreover, the contact potential as measured by in- situ Kelvin probe shows a saturation just after the percolation threshold. These results indicate that highly crystallized doped layers are not necessary in device applications. From the Kelvin probe measurements, the potential profile through the p-(μc-Si:H)/ i-(a-Si:H) interface was measured. The microcrystalline silicon p-layers were successfully incorporated in single junction solar cells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Guha, S., Mat. Res. Soc. Symp. Proc. Vol. 149, 405 (1989).Google Scholar
2 Yang, J., Banerjee, A., and Guha, S., Appl. Phys. Lett. 70, 2975 (1997).Google Scholar
3 Kinoshita, T., Shima, M., Terakawa, A., Isomura, M., Haku, H., Wakisaka, K., Tanaka, M., Kiyama, S., and Tsuda, S., Proc. 14th E-PVSEC, Barcelona, Spain (1997), p 566.Google Scholar
4 Vaucher, N. P., Rech, B., Fischer, D., Dubail, S., Keppner, H., Beneking, C., Hadjadj, A., Shklover, V., and Shah, A., (to be published in Solar Energy Materials and Solar Cells).Google Scholar
5 Hamma, S. and Cabarrocas, P. Rocai, to be presented at the 2nd world PVSEC, Vienna, Austria July 1998.Google Scholar
6 Xu, X., Banerjee, A., Guha, S., Vasanth, K., and Wagner, S., Appl. Phys. Lett. 67 (16), 1995.Google Scholar
7 Hamma, S. and Cabarrocas, P. Rocai, J. Appl. Phys. 81, 7282 (1997).Google Scholar
8 Hamma, S. and Cabarrocas, P. Rocai, Proc. 14th E-PVSEC, Barcelona, Spain (1997), p 1393.Google Scholar
9 Bruggeman, D.G., Ann. Phys. (Leipzig) 24, 636 (1935).Google Scholar
10 Hadjadj, A., Cabarrocas, P. Rocai, and Equer, B., B. Rev. Scient Instrum, 66, 5272 (1995).Google Scholar
11 Jellison, G. E. Jr., Chisholm, M. F., and Gorbatkin, S. M., App. Phys. Lett. 62, 3348 (1993).Google Scholar
12 Aspnes, D. E., and Studna, A. A., Phys. Rev. B 27, 985 (1983).Google Scholar
13 Cabarrocas, P. Rocai, Layadi, N., Drlvillon, B., and Solomon, I., J. Non-Cryst. Solid, 1998-200, 871 (1996).Google Scholar
14 Hamma, S. and Cabarrocas, P. Rocai, Thin Solid Films, 296, 11 (1997).Google Scholar
15 Cabarrocas, P. Rocai, Hamma, S., HadJadj, A., Bertoneu, J., and Andreu, J., Appl. Phys. Lett. 69, 529 (1996).Google Scholar
16 Layadi, N., Cabarrocas, P. Rocai, Drévillon, B., and Solomon, I., Phys. Rev. B 52, 5136 (1995).Google Scholar
17 Mimura, H. and Hatanaka, Y., Appl. Phys. Lett. 50, 326 (1987).Google Scholar
18 Hadjadj, A., Cabarrocas, P. Rocai, and Equer, B., Proc. 13th E-PVSEC, Nice, France 1995, p 253.Google Scholar