Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T00:45:36.049Z Has data issue: false hasContentIssue false

In-Situ Stress Control During Sputter Deposition

Published online by Cambridge University Press:  15 February 2011

R. R. Kola
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
G. L. Miller
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
G. K. Celler
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974.
Get access

Abstract

Sputter-deposited tungsten thin films exhibit high intrinsic stress. This stress can result in both in-plane and out-of-plane distortion when the films are deposited on thin membrane structures such as x-ray masks. To minimize these distortions, intrinsic stresses in these absorber films have to be low and reproducible. Several groups have recently reported that by precisely controlling the sputter deposition conditions, W films with low stresses can be produced. However, the reproducibility is limited. We have built a novel acoustic resonance system, in which one electrode, mounted behind the mask membrane, monitors its position and simultaneously provides an electrostatic drive to keep it vibrating at its resonant frequency. For typical membranes and deposition conditions, vibrational modes in the 1–10 kHz range are observed. During tungsten deposition, sputtering pressure is varied in response to changes in the membrane resonant frequency, so that the film stress is minimized. We have made a systematic study of the microstructure and stress of W thin films using a variety of characterization techniques. We have shown the feasibility of depositing low-stress (<10 MPa) W films by in-situ stress monitoring and control of sputtering pressure. By using a proper combination of substrate heating and sputter power density (thermal engineering), the reproducibility of in-situ stress control is greatly improved. The present experimental results of in-situ stress control during W sputter deposition are very promising for the successful utilization of low stress (<10 MPa) W films as absorbers for x-ray masks.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ku, Y. C., Smith, H. I., and Plotnik, I., Microelectronic Eng. 11, 303 (1990).Google Scholar
2. Hoffman, D. W. and Thornton, J. A., Thin Solid Films, 40, 355 (1977).CrossRefGoogle Scholar
3. Yanof, A. W., Resnick, D. J., Jankoski, C. A., and Johnson, W. A., in Proceedings of the SPIE, Vol.632, (Electron-Beam, X-ray, and Ion-Beam Techniques for Submicrometer Lithographies V), Ed. Blais, P.D., 118 (1986).Google Scholar
4. Thornton, J. A., J. Vac. Sci. Technol. 11, 666 (1974).CrossRefGoogle Scholar
5. Thornton, J. A., J. Vac. Sci. Technol. A 4, 3059 (1986).CrossRefGoogle Scholar
6. Haghiri-Gosnet, A. M., Ladan, F. R., Mayeux, C., Launois, H., and Joncour, M. C., J. Vac. Sci. Technol. A 7, 2663 (1989).Google Scholar
7. Luethje, H., Harms, M., Bruns, A., and Mackens, U., Microelectronic Eng. 6, 259 (1987).CrossRefGoogle Scholar
8. Hoffiman, D. W. and Thornton, J. A., J. Vac. Sci. Technol. 20, 355 (1982).Google Scholar
9. Hoffman, D. W. and Thornton, J. A., J. Vac. Sci. Technol. 17, 380 (1980).CrossRefGoogle Scholar
10. Bensaoula, A., Wolfe, J. C., Ignatiev, A., Fong, F. O., and Leung, T. S., J. Vac. Sci. Technol. A 2, 389 (1984).Google Scholar
11. Gouy-Pailler, Ph. and Pauleau, Y., J. Vac. Sci. Technol. A 11, 96 (1993).CrossRefGoogle Scholar
12. Wu, C. T., Thin Solid Films, 64, 103 (1979).CrossRefGoogle Scholar
13. Vink, T. J., Somers, M. A. J., Daams, J. L. C., and Dirks, A. G., J. Appl. Phys. 70, 4301 (1991).Google Scholar
14. Muller, K. H., J. Appl. Phys. 62, 1796 (1987).Google Scholar
15. Fang, C. C., Jones, F., and Prasad, V., MRS Proc. 253, (1992).Google Scholar
16. Fang, C. C., Jones, F., Kola, R. R., Celler, G. K., and Prasad, V., J. Vac. Sci. Technol. B11, Nov./Dec. (1993).Google Scholar
17. Itoh, M., Hori, M., and Nadahara, S., J. Vac. Sci. Technol. B 9, 149 (1991).Google Scholar
18. Kola, R. R., Celler, G. K., Frackoviak, J., Jurgensen, C. W., and Trimble, L. E., J. Vac. Sci. Technol. B 9, 3301 (1991).CrossRefGoogle Scholar
19. Celler, G. K., Trimble, L. E., Frackoviak, J., Jurgensen, C. W., Kola, R. R., Novembre, A. E., and Weber, G. R., Appl. Phys. Lett. 59, 3105 (1991).Google Scholar
20. Suzuki, K. and Shimizu, Y., Microelectronic Eng. 14, 207 (1991).Google Scholar
21. Ku, Y. C., Smith, H. I., and Plotnik, I., J. Vac. Sci. Technol. B 6, 2174 (1988).Google Scholar
22. Ito, M. and Hori, M., J. Vac. Sci. Technol. B 9, 165 (1991).Google Scholar
23. M. Chaker et al., J. Vac. Sci. Technol. B 10, 3191 (1992).Google Scholar
24. Ohta, T., Kawazu, Y., and Yamashita, Y., Jpn. J. Appl. Phys. 29, 2195 (1990).Google Scholar
25. Karnezos, M., J. Vac. Sci. Technol. B 4, 226 (1986).Google Scholar
26. Berry, B. S. and Pritchet, W. C., J. Appl. Phys. 67, 3661 (1990).Google Scholar
27. Acosta, R. E., Johnson, W. A., Berry, B. S., and Pritchet, W. C., Microelectronic Eng. 17, 189 (1992).CrossRefGoogle Scholar
28. Ku, Y. C., Ng, L. P., Carpenter, R., Lu, K., Smith, H. I., Haas, L. E., and Plotnik, I., J. Vac. Sci. Technol. B 9, 3297 (1991).Google Scholar
29. Meirovitch, L., Analytical Methods in Vibration, MacMillan (1967).Google Scholar
30. Rayleigh, Lord, The Theory of Sound, Dover (1945).Google Scholar
31. Kola, R. R., Miller, G. L., and Wagner, E. R., (unpublished).Google Scholar