Skip to main content Accessibility help

In-situ preparation of metal oxide thin films by inkjet printing acetates solutions

  • Mei Fang (a1) (a2), Wolfgang Voit (a2), Yan Wu (a3), Lyubov Belova (a2) and K.V. Rao (a2)...


Direct printing of functional oxide thin films could provide a new route to low-cost, efficient and scalable fabrications of electronic devices. One challenge that remains open is to design the inks with long term stability for effective deposition of specific oxide materials of industrial importance. In this paper, we introduce a reliable method of producing stable inks for ‘in-situ’ deposition of oxide thin films by inkjet printing. The inks were prepared from metal-acetates solutions and printed on a variety of substrates. The acetate precursors were decomposed into oxide films during the subsequent calcination process to achieve the ‘in-situ’ deposition of the desired oxide films directly on the substrate. By this procedure we have obtained room temperature contamination free ferromagnetic spintronic materials like Fe doped MgO and ZnO films from their acetate(s) solutions. We find that the origin of magnetism in ZnO, MgO and their Fe-doped films to be intrinsic. For a 28 nm thick film of Fe-doped ZnO we observe an enhanced magnetic moment of 16.0 emu/cm3 while it is 5.5 emu/cm3 for the doped MgO film of single pass printed. The origin of magnetism is attributed to cat-ion vacancies. We have also fabricated highly transparent indium tin oxide films with a transparency >95% both in the visible and IR range which is rather unique compared to films grown by any other technique. The films have a nano-porous structure, an added bonus from inkjetting that makes such films advantageous for a broad range of applications.



Hide All
1. Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W., and Woo, E. P., Science 290, 2123 (2000).
2. Kawase, T., Shimoda, T., Newsome, C., Sirringhaus, H., and Friend, R. H., Thin Solid Films 438-439, 279 (2003).
3. Stutzmann, N., Friend, R. H., and Sirringhaus, H., Science 299, 1881 (2003).
4. Sekitani, T., Noguchi, Y., Zschieschang, U., Klauk, H., and Someya, T., Proceedings of the National Academy of Sciences of the United States of America 105, 4976 (2008).
5. Yan, H., Chen, Z., Zheng, Y., Newman, C., Quinn, J. R., Dötz, F., Kastler, M., and Facchetti, A., Nature 457, 679 (2009).
6. Shimoda, T., Morii, K., Seki, S., and Kiguchi, H., MRS Bulletin 28, 821 (2003).
7. Huang, D., Liao, F., Molesa, S., Redinger, D., and Subramanian, V., Journal of the Electrochemical Society 150, G412 (2003).
8. Lee, H. H., Chou, K. S., and Huang, K. C., Nanotechnology 16, 2436 (2005).
9. Tobjörk, D. and Österbacka, R., Advanced Materials 23, 1935 (2011).
10. Roth, E. A., Xu, T., Das, M., Gregory, C., Hickman, J. J., and Boland, T., Biomaterials 25, 3707 (2004).
11. Hoth, C. N., Schilinsky, P., Choulis, S. A., and Brabec, C. J., Nano Letters 8, 2806 (2008).
12. Eom, S. H., Senthilarasu, S., Uthirakumar, P., Yoon, S. C., Lim, J., Lee, C., Lim, H. S., Lee, J., and Lee, S. H., Organic Electronics: physics, materials, applications 10, 536 (2009).
13. Xu, T., Jin, J., Gregory, C., Hickman, J. J., and Boland, T., Biomaterials 26, 93 (2005).
14. Barbulovic-Nad, I., Lucente, M., Sun, Y., Zhang, M., Wheeler, A. R., and Bussmann, M., Critical Reviews in Biotechnology 26, 237 (2006).
15. Calvert, P., Chemistry of Materials 13, 3299 (2001).
16. Singh, M., Haverinen, H. M., Dhagat, P., and Jabbour, G. E., Advanced Materials 22, 673 (2010).
17. Magdassi, S., The chemistry of inkjet inks (World Science Publising Co. Pte. Ltd., Singapore, 2010).
18. Kim, G. H., Kim, H. S., Shin, H. S., Ahn, B. D., Kim, K. H., and Kim, H. J., Thin Solid Films 517, 4007 (2009).
19. Huang, C.-C., Su, P.-C., and Liao, Y.-C., Thin Solid Films.
20. Fan, J., Boettcher, S. W., and Stucky, G. D., Chemistry of Materials 18, 6391 (2006).
21. Boettcher, S. W., Fan, J., Tsung, C. K., Shi, Q., and Stucky, G. D., Accounts of Chemical Research 40, 784 (2007).
22. Fan, J., Dai, Y., Li, Y., Zheng, N., Guo, J., Yan, X., and Stucky, G. D., Journal of the American Chemical Society 131, 15568 (2009).
23. Liu, X., et al. ., Nano Letters 12, 5733 (2012).
24. Fang, M., Voit, W., Kyndiah, A., Wu, Y., Belova, L., and Rao, K., MRS Proceedings 1394 (2012).
25. Girgis, E., Fang, M., Hassan, E., Kathab, N., and Rao, K. V., Journal of Materials Research 28, 502 (2012).
26. Wu, Y., Zhan, Y., Fahlman, M., Fang, M., Rao, K., and Belova, L., MRS Proceedings 1292 (2011).
27. Lin, Y., Jiang, D., Lin, F., Shi, W., and Ma, X., Journal of Alloys and Compounds 436, 30 (2007).
28. Kapilashrami, M., Xu, J., Ström, V., Rao, K. V., and Belova, L., Applied Physics Letters 95 (2009).
29. Hong, N. H., Chikoidze, E., and Dumont, Y., Physica B: Condensed Matter 404, 3978 (2009).
30. Araujo, C. M., et al. ., Applied Physics Letters 96 (2010).
31. Kim, H.-K., You, I.-K., Koo, J. B., and Kim, S.-H., Surface and Coatings Technology 211, 33 (2012).
32. Hwang, M.-s., Jeong, B.-y., Moon, J., Chun, S.-K., and Kim, J., Materials Science and Engineering: B 176, 1128 (2011).
33. Jeong, J.-A. and Kim, H.-K., Current Applied Physics 10, e105 (2010).


In-situ preparation of metal oxide thin films by inkjet printing acetates solutions

  • Mei Fang (a1) (a2), Wolfgang Voit (a2), Yan Wu (a3), Lyubov Belova (a2) and K.V. Rao (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed