Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T08:45:32.795Z Has data issue: false hasContentIssue false

In-Situ Observation of the Alpha/beta Cristobalite Transition Using High Voltage Electron Microscopy

Published online by Cambridge University Press:  21 February 2011

A. Meike
Affiliation:
Material and Chemical Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
W. E. Glassley
Affiliation:
Earth Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550
Get access

Abstract

A high temperature water vapor phase is expected to persist in the vicinity of high level radioactive waste packages for several hundreds of years. We have begun an investigation of the structural and chemical effects of water on cristobalite because of its abundance in the near field environment. A high voltage transmission electron microscope (HVEM) investigation of bulk synthesized α-cristobalite to be used in single phase dissolution and precipitation kinetics experiments revealed the presence β cristobalite, quartz and amorphous silica, in addition to α-cristobalite. Consequently, this apparent metastable persistence of β-cristobalite and amorphous silica during the synthesis of α-cristobalite was investigated using a heating stage and an environmental cell installed in the HVEM that allowed the introduction of either dry CO2 or a CO2 + H2O vapor. Preliminary electron diffraction evidence suggests that the presence of water vapor affected the α-β transition temperature. Water vapor may also be responsible for the development of an amorphous silica phase at the transition that may persist over an interval of several tens of degrees. The amorphous phase was not documented during the dry heating experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Murphy, G., Glassley, W. E. and Larson, P.. (in prep).Google Scholar
2. Fenner, C. N.. Am. J. Sci. 36 331384 (1913).Google Scholar
3. Wyckoff, W. L.. Amer. Jour. Sci. 9 448459 (1925).Google Scholar
4. Barth, T. F. W.. Amer. Jour. Sci. 23 350356 (1932).Google Scholar
5. Barth, T. F. W.. Amer. Jour. Sci. 24 97110 (1932).Google Scholar
6. Nieuwenkamp, W.. Z. Kristallogr. 92 35 (1937).Google Scholar
7. Nieuwenkamp, W.. Z. Kristallogr. 96 454458 (1937).Google Scholar
8. Dollase, W. A.. Z. Kristallogr. 121 369377 (1965).Google Scholar
9. Peacor, D. R.. Z. Kristallogr. 138 274298 (1973).Google Scholar
10. Wright, A. F. and Leadbetter, A. J.. Philos. Mag. 31 13911401 (1975).Google Scholar
11. Leadbetter, A. J., Smith, T. W. and Wright, A. F.. Nature Phys. Sci. 244 125126 (1973).Google Scholar
12. Buerger, M. J.. in Phase Transformations in Solids edited by Smoluchowki, R., Mayer, J. E. and Weyl, W. A. (Wiley, Chapman and Hall, London 1951).Google Scholar
13. Deer, W. A., Howie, R. A., and Zussman, J.. An Introduction to the Rock Forminge Minerals (Longman Group Ltd., London 1975).Google Scholar
14. Hua, G. L., Welberry, T. R., Withers, R. L. and Thompson, J. G.. J. Appl. Cryst. 21 458465 (1988).Google Scholar
15. Hill, V. G. and Roy, R.. J. Am. Ceram. Soc. 41 532537 (1958).Google Scholar
16. Nitao, J. J.. UCID-21444 (UCID Lawrence Livermore National Laboratory, Livermore, California 1988).Google Scholar
17. Swann, P. R.. in Electron Microscopy and Structure of Materials. edited by Thomas, G., Fulrath, R. M. and Fisher, R. M. (University of California Press, Los Angeles, California, 1972), pp. 878904 Google Scholar
18. Fournier, R. O. and Rowe, J. J.. Am. Min. 47 897902 (1962).Google Scholar
19. Cohen, L. H. and Klement, W. Jr Phil. Mag. 39A 399404 (1979).Google Scholar
20. Perrotta, A. J. Grubbs, D. K., Martin, E. S., Dando, N. R., McKinstry, H. A., and Huang, C.-Y.. J. Am. Ceram. Soc. 72 441447 (1989).Google Scholar