Hostname: page-component-6d856f89d9-76ns8 Total loading time: 0 Render date: 2024-07-16T07:20:02.121Z Has data issue: false hasContentIssue false

In-Situ Fabrication and Process Control Techniques in Rapid Thermal Processing

Published online by Cambridge University Press:  28 February 2011

Mehrdad M. Moslehi
Affiliation:
Semiconductor Process and Design Center, Texas Instruments, Dallas, Texas 75265
John Kuehne
Affiliation:
Semiconductor Process and Design Center, Texas Instruments, Dallas, Texas 75265
Richard Yeakley
Affiliation:
Semiconductor Process and Design Center, Texas Instruments, Dallas, Texas 75265
Lino Velo
Affiliation:
Semiconductor Process and Design Center, Texas Instruments, Dallas, Texas 75265
Habib Najm
Affiliation:
Semiconductor Process and Design Center, Texas Instruments, Dallas, Texas 75265
Bill Dostalik
Affiliation:
Semiconductor Process and Design Center, Texas Instruments, Dallas, Texas 75265
David Yin
Affiliation:
Semiconductor Process and Design Center, Texas Instruments, Dallas, Texas 75265
Cecil J. Davis
Affiliation:
Semiconductor Process and Design Center, Texas Instruments, Dallas, Texas 75265
Get access

Abstract

Advanced rapid thermal processing (RTP) equipment and sensors have been developed for in-situ fabrication of semiconductor devices. High-performance multi-zone lamp modules have been applied to various processes including rapid thermal oxidation (RTO), chemicalvapor deposition (CVD) of tungsten and amorphous/polycrystalline silicon, silicide formation, as well as high-temperature rapid thermal annealing (RTA). Concurrent use of multizone lamps and multi-point temperature sensors allows real-time wafer temperature control and process uniformity optimization. Specific experimental results will be presented on the multi-zone lamp modules, in-situ process control sensors, and single-wafer fabrication processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Invited Paper

References

[1] Rapid Thermal and Related Processing Techniques, Singh, R. and Moslehi, M. M., Editors, Proc. SPIE 1393, (1991).CrossRefGoogle Scholar
[2] Moslehi, M. M., IEEE Trans. on Semiconductor Mfg., 2, 130 (1989).Google Scholar
[3] Gyurcsik, R. S., Riley, T. J., and Sorrell, F. Y., IEEE Trans. on Semiconductor Mfg., 4 (1), 9 (1991).Google Scholar
[4] Campbell, S., Knutson, K., Ahn, K., Leighton, J., and Liu, B., IEDM Tech. Dig., 921 (1990).Google Scholar
[5] Sorrel, F., SRC workshop on temperature meas., Santa Fe, New Mexico, Feb. (1990).Google Scholar
[6] Nulman, J., Cohen, B., Blonigan, W., Antonio, S., Meinecke, R., and Gat, A., MRS Symp. Proc., 146, 461 (1989).CrossRefGoogle Scholar
[7] Sato, T., Jpn. J. Appl. Phys., 6, 339 (1967).Google Scholar
[8] Gelpey, J. and Liao, J., SRC workshop on temperature meas., Santa Fe, New Mexico, Feb. (1990).Google Scholar
[9] Moslehi, M., Chapman, R., Wong, M., Paranjpe, A., Najm, H., Kuehne, J., Yeakley, R., and Davis, C., IEEE Trans. on Electron Devices (submitted for publication), (Dec. 1991).Google Scholar
[10] Kamins, T., Bradbury, D., Cass, T., Laderman, S., and Reid, G., J. Electrochem. Soc., 131, 2555 (1986).Google Scholar
[11] Moslehi, M. M., Shatas, S. C., Saraswat, K. C., and Meindl, J. D., IEEE Trans. on Electron Devices, ED-34 (6), 1407 (1987).Google Scholar