Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T02:56:40.369Z Has data issue: false hasContentIssue false

In-Situ Characterization Of Ultra-Small Magnetic Junctions Made By Electrochemical Techniques

Published online by Cambridge University Press:  21 March 2011

A. Sokolov
Affiliation:
Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln NE 68588-0111, U.S.A
J.R. Jennings
Affiliation:
Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln NE 68588-0111, U.S.A
C-S Yang
Affiliation:
Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln NE 68588-0111, U.S.A
J. Redepenning
Affiliation:
Department of ChemistryUniversity of Nebraska-Lincoln, Lincoln NE 68588-0111, U.S.A
B. Doudin
Affiliation:
Department of ChemistryUniversity of Nebraska-Lincoln, Lincoln NE 68588-0111, U.S.A
Get access

Abstract

Electrochemical impedance spectroscopy is used to characterize the growth of NiO over Ni electrodes. We find a limited increase of thickness and a significant increase of porosity of the oxide as a function of time and anodization potential. Conductance measurements performed on Ni/NiO/Co junctions of 30 nm diameters indicate the presence of a Coulomb blockade at low temperatures and small bias. Tunneling is observed at higher bias. Small magnetoresistance ratios (1%) are found.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Julliere, M., Phys. Lett. 54A, 225 (1975).Google Scholar
2. Moodera, J. S., Kinder, L. R., Wong, T. M. and Meservey, R., Phys. Rev. Lett. 74, 3273 (1996)Google Scholar
3. Gallagher, W. J., Parkin, S. S. P., Lu, Yu, Bian, X. P., Marley, A., Roche, K. P., Altman, R. A., Rishton, S. A., Jahnes, C., Shaw, T. M. and Xiao, Gang, J. Appl. Phys. 81, 3741 (1997).Google Scholar
4. Doudin, B., Gilbert, S., Redmond, G., Ansermet, J.-Ph., Phys. Rev. Lett. 79, 933 (1997).Google Scholar
5. Takahashi, S. and Maekawa, S., Phys. Rev. Lett. 80, 1758 (1998).Google Scholar
6. Barnas, J. and Fert, A., Phys. Rev. Lett. 80, 1058 (1998)Google Scholar
7. Brataas, A., Nazarov, Y. V., Inoue, J. and Bauer, G. E., Phys. Rev. B 59, 93 (1999).Google Scholar
8. Macdonald, J. R., Impedance spectroscopy: emphasizing solid materials and systems, John Wiley & Sons, New York, (1987).Google Scholar
9. Martin, C. R., Science 266, 1961 (1994)Google Scholar
10. MacDougall, B. and Graham, M. J., J. Electrochem. Soc. 128, 2321 (1981).Google Scholar
11. Duprat, M., Ed. Electrochemical Methods in Corrosion Research, Materials Science Forum, Vol 8 (1986).Google Scholar
12. Wegrowe, J.E., Gilbert, S.E., Kelly, D., Doudin, B., Ansermet, J.-Ph. IEEE Trans. on Mag. 34, 903 (1998).10.1109/20.706306Google Scholar
13. Dagan, G., Shen, W.-M. and Tomkiewicz, M., J. Electrochem. Soc. 139, 1855 (1992).10.1149/1.2069511Google Scholar
14. Simmons, J. G., J. Appl. Phys. 34, 1793 (1963)Google Scholar
15. Miyazaki, T. and Tezuka, N., J. Mag. Mag. Mater. 151, 403 (1995).Google Scholar