Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T18:23:07.968Z Has data issue: false hasContentIssue false

Insight into the Formation of Ultrafine Nanostructures in Bulk Amorphous Zr54.5 Ti7.5Al10Cu20Ni8

Published online by Cambridge University Press:  15 March 2011

André Heinemann
Affiliation:
Hahn-Meitner-Institut Berlin, Glienicker Straße 100, D-14109 Berlin, Germany
Helmut Hermann
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden, PF 27 00 16, D-01171 Dresden, Germany
Albrecht Wiedenmann
Affiliation:
Hahn-Meitner-Institut Berlin, Glienicker Straße 100, D-14109 Berlin, Germany
Norbert Mattern
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden, PF 27 00 16, D-01171 Dresden, Germany
Uta Kühn
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden, PF 27 00 16, D-01171 Dresden, Germany
Hans-Dietrich Bauer
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden, PF 27 00 16, D-01171 Dresden, Germany
Jürgen Eckert
Affiliation:
Institut für Festkörper- und Werkstofforschung Dresden, PF 27 00 16, D-01171 Dresden, Germany
Get access

Abstract

Bulk amorphous Zr54.5 Ti7.5Al10Cu20Ni8 is investigated by means of smal-angle neutron scattering (SANS), differential-scanning calorimetry (DSC), high-resolution electron microscopy (HREM) and other methods. The formation of ultrafine nanostructures in the glassy phase is observed and explained by a new model. Structura fluctuations of randomly distributed partialy ordered domains grow during annealing just below the glass transition temperature by local re-ordering. During anneaing the DSC gives evidence for a increasing volume fraction of the localy ordered domains. At high volume fractions of impinging domains a percolation threshold on the interconnected domain boundaries occurs and enhanced diffusion becomes possible. At that stage SANS measurements lead to satistically significant scattering data. The SANS signals are anayzed in terms of a model taking into account spherica particles surrounded by diffusion zones and interparticle interference effects. The mean radius of the nanocrystaline particles is determined to 1 nm and the mean thickness of the depletion zone is 2 nm. The upper limit for the volume fraction after annealing at 653 K for 4hours is about 20 %. Electron microscopy confirms the size and shows that the particle are crystaline.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Klement, W., Willens, R. H., and Duwez, P., Nature 187, 869 (1960).Google Scholar
[2] Yoshizawa, Y., J. Metastable Nanocryst. Mater. 1, 51 (1999).Google Scholar
[3] Sommer, F., Z. Metalk. 73, 72 (1982).Google Scholar
[4] Nold, E., Rainer-Harbach, G., Lamparter, P., and Steeb, S., Z. Naturforsch. 38, 325 (1984).Google Scholar
[5] Nassif, E., Lamparter, P., and Steeb, S., J. Non-Cryst. Solids 61–62, 319 (1984).Google Scholar
[6] Fujita, F. E., in in Rapidly Quenched Metals (North-Holland, Amsterdam, 1985).Google Scholar
[7] Cain, M. and Köster, U., Mater. Sci. Forum 269–272, 749 (1998).Google Scholar
[8] Köster, U., Rüdiger, A., and Meinhardt, J., J. Metastable Nanocryst. Mater. 1, 9 (1999).Google Scholar
[9] Schneider, S., Thiyagarajan, P., Geyer, U., and Johnson, W. L., Physica B 241–243, 918 (1998).Google Scholar
[10] Löffler, J. F. and Johnson, W. L., Appl. Phys. Lett. 76, 3394 (2000).Google Scholar
[11] Kelton, K. F., Phil. Mag. Lett 77, 337 (1998).Google Scholar
[12] Hermann, H., Heinemann, A., Mattern, N., and Wiedenmann, A., Euro. Phys. Lett. 51, 127 (2000).Google Scholar
[13] Mattern, N., Kühn, U., Neuefeind, J., and Eckert, J., Appl. Phys. Lett. 77, 1153 (2000).Google Scholar
[14] Fan, C. and Inoue, A., Appl. Phys. Lett. 77, 46 (2000).Google Scholar
[15] Fan, C. and Inoue, A., Mater. Transactions JIM 40, 1376 (2000).Google Scholar
[16] Fan, C. and Inoue, A., Fan, C. and Li, C. and A. Inoue and V. Haas 61, 3761 (2000).Google Scholar
[17] Wang, J. G., Choi, B. W., Nieh, T. G., and Liu, C. T., J. Mater. Res. 15, 798 (2000).Google Scholar
[18] Porod, G., Small Angle X-ray Scattering (Academic Press, London, 1982).Google Scholar
[19] Heinemann, A., Hermann, H., Wiedenman, A., Mattern, N., and Wetzig, K., J. Appl. Cryst. 33, 1386 (2000).Google Scholar
[20] Ashcroft, N. W. and Lekner, J., Phys. Rev. 145, 83 (1966).Google Scholar
[21] Bertram, W. K., J. Appl. Cryst. 29, 682 (1996).Google Scholar
[22] Hermann, H., Heinemann, A., Bauer, H.-D., Mattern, N., Kühn, U., and Wiedenmann, A., J. Appl. Cryst. 34, 666 (2001).Google Scholar
[23] Heuer, A., Wilhelm, M., Zimmermann, H., and Spiess, H. W., Phys. Rev. Lett. 75, 2851 (1995).Google Scholar
[24] Böhmer, R., Hinze, G., Diezemann, G., Geil, B., and Sillescu, H., Europhys. Lett. 36, 55 (1996).Google Scholar
[25] Zorn, R., Rev. B 5, 6249 (1997).Google Scholar
[26] Kob, W., Donati, C., Plimpton, S. J., Poole, P. H., and Glotzer, S. C., Phys. Rev. Lett. 79, 2827 (1997).Google Scholar
[27] Donati, C., Douglas, J. F., Kob, W., Plimpton, S. J., Poole, P. H., and Glotzer, S. C., Phys. Rev. Lett. 80, 2338 (1998).Google Scholar
[28] Caprion, D. and Schober, H. R., Phys. Rev. Lett. 85, 4293 (2000).Google Scholar
[29] Kaur, C. and Das, S. P., Phys. Rev. Lett. 86, 2062 (2001).Google Scholar
[30] Kolmogorov, A. N., Izv. Akad. Nauk USSR. 2, 355 (1937).Google Scholar
[31] Johnson, W. A. and Mehl, R., Trans. AIME 135, 416 (1939).Google Scholar
[32] Avrami, M., J. Chem. Phys. 7, 1103 (1939).Google Scholar
[33] Holland-Moritz, D., J. Non-Equilibrium Processing 11, 169 (1998).Google Scholar
[34] Köster, U., Meinhardt, J., Roos, S., and Liebertz, H., Appl. Phys. Lett. 169, 179 (1996).Google Scholar
[35] Eckert, J., Mattern, N., Zinkevitch, M., and Seidel, M., Mater. Trans. JIM 39, 623 (1996).Google Scholar