Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-26T14:39:51.773Z Has data issue: false hasContentIssue false

InP Layers Grown by Molecular Beam Epitaxy at Low Substrate Temperature

Published online by Cambridge University Press:  15 February 2011

K. Xie
Affiliation:
State University of New York at Buffalo, Dept. of Electrical and Computer Engineering, Bonner Hall, Buffalo, NY 14260
C. R. Wie
Affiliation:
State University of New York at Buffalo, Dept. of Electrical and Computer Engineering, Bonner Hall, Buffalo, NY 14260
G. W. Wicks
Affiliation:
Institute of Optics, University of Rochester, Rochester, NY 12627
Get access

Abstract

InP layers were grown on semi-insulating InP wafer by molecular beam epitaxy (MBE) at low substrate temperatures (<200° C), using solid phosphorus source. We use x-ray diffraction, double crystal x-ray rocking curve, Auger electron spectroscopy, and temperature-dependent Van der Pauw and Hall effect measurements to characterize the as-grown and annealed InP layers. It is found that the InP layer is in poly-crystal state with excess P over 7 at%. The layers became single crystal after annealing above 400°C. The resistivity of the InP layer decreased from 60 Ωcm for an as-grown sample to 0.82 Ωcm after 400°C RTA annealing. The different role of excess P as compared to the role played by excess As in LT-GaAs is discussed based on the P properties.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Smith, F.W., Calawa, A.R., Chu, C.I., Manfra, M.J. and Mahoney, L.J., IEEE Electron Device Letters, EDL–9, 77 (1988).Google Scholar
2.Yin, L.W., Hwang, Y., Lee, J.H., Kolbas, Robert M., Trew, Robert J., and Mishra, Umesh K., IEEE Electron Device Letters, 11, 561 (1990).10.1109/55.63040Google Scholar
3.Campbell, A.C., Crook, G.E., Rogers, T.J., and Streetman, B.G., Vac, J., Sci. Technol.B, 8, 305 (1990).Google Scholar
4.Metzger, R.A., Brown, A.S., Stanchina, W.E., Cui, M., Wilson, R.G., Kargodorian, T.V., McCray, L.G. and Henige, J.A., J. Crystal Growth. 111, 445 (1991).Google Scholar
5.Norris, M.T., and Stanley, C.R., Appl. Phys. Lett. 35, 620 (1974).Google Scholar
6.Wicks, G.W., Koch, M.W., Varriano, J.A., Johnson, F.G., Wie, C.R., Kim, H.M., and Colombo, P., Appl. Phys. Lett. 59, 342 (1991).Google Scholar
7.Liliental-Weber, Z., Smith, F.W., and Calawa, A.R., MRS Spring Conf. April, 1990. San Fran. CA.Google Scholar
8.Eaglesham, D.J., Pfeifber, L.N., West, K.W., and Dykaar, D.R., Appl. Phys. Lett. 58, 65 (1991).Google Scholar
9.Asahi, Hajime, Kawamura, Yuichi, Ikeda, Mutsuo, and Okamoto, Hiroshi, J. Appl. Phys. 52, 2852(1981)10.1063/1.329017Google Scholar
10.Wie, C.R., Xie, K., Look, D.C., Evans, K.R., and Stutz, C.E., in “Semi-insulating III–V Materials”, Toronto, (1990) 71; Mater. Res.Soc. Symp. Proc. 198, 383 (1990).Google Scholar
11.Look, D.C., Walters, D.C., Manasreh, M.O., Sizelove, J.R., Stutz, C.E., and Evans, K.R.Phys. Rev. B. 42, 3578 (1990).Google Scholar
12.Warren, A.C., Woodall, J.M., Freeouf, J.L., Grischkowsky, D., McLntarff, D.T., Melloch, M.R., and Ofsaka, N., Appl. Phys. Lett. 57, 1331 (1990).10.1063/1.103474Google Scholar
13.Gislason, H.P., in “Semi-insulating III–V Materials”, Malmo (1988),311.Google Scholar
14.Tadayon, Bijan, Tadayon, Saied, Zhu, J.G., Spencer, M.G., Harris, G.L., Griffin, J., and Eastman, L.F., J. Vac. Sci. Technol. B. 8, 131 (1990).10.1116/1.584839Google Scholar