Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T09:08:12.219Z Has data issue: false hasContentIssue false

Inorganic-Organic Hybrid Aerogels

Published online by Cambridge University Press:  21 February 2011

Ulrich Schubert
Affiliation:
Institut für Anorganische Chemie der Technischen Universität Wien, Getreidemarkt 9, A-1060 Wien, Austria
Fritz Schwertfeger
Affiliation:
Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
Nicola Hüsing
Affiliation:
Institut für Anorganische Chemie der Technischen Universität Wien, Getreidemarkt 9, A-1060 Wien, Austria
Elisabeth Seyfried
Affiliation:
Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
Get access

Abstract

Organically modified silica aerogels were prepared by NH4OH-catalyzed hydrolysis and condensation of RSi(OMe)3 / Si(OMe)4 mixtures, followed by supercritical drying of the alcogels with methanol or CO2. Terminal alkyl or aryl groups, bridging groups or functional organic (methacryloxypropyl or glycidoxypropyl) groups were employed for R. By the proper choice of the organic groups, the RSi(OMe)3 / Si(OMe)4 ratio and the drying conditions, hydrophobic aerogels, being insensitive towards moisture, were obtained with no residual Si-OH or Si-OMe groups left. The transparency and porosity of the organically modified aerogels was only slightly diminished relative to unmodified silica aerogels. The elastic constant of the aerogels was significantly influenced by the kind of organic groups. By pyrolysis of the phenyl-substituted aerogels, nanometer-sized carbon structures were generated. They partly coat the primary aerogel particles and provide a very high mass specific extinction in the wavelengths interval critical for thermal radiative transport.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Fricke, J., Aerogels (Springer Proc.Phys. Vol.6, Heidelberg, 1986). H.D. Gesser and P.C. Goswami, Chem.Rev. 89, 765 (1989); J. Fricke and A. Emmerling, Struct. Bonding 77, 37 (1992); L. L. Hench and J. K. West, Chem. Rev. 90, 33 (1990).Google Scholar
2 Brinker, CJ. and Scherer, G., Sol-Gel-Science, the Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).Google Scholar
3 Amberg-Schwab, S., Arpac, E., Glaubitt, W., Rose, K., Schottner, G. and Schubert, U., in High Performance Films and Coatings, edited by Vincenzini, P. (Elsevier Sei. Publ., New York 1991), p.203. U. Schubert, M. Birkhahn, B. Breitscheidel, C. Egger, W. Glaubitt, K. Greiwe, F. Schwertfeger and D. Sporn, Fortschrittsber. Dt. Keram. Ges. 8(5), 17 (1993).Google Scholar
4 (a) Schwertfeger, F., Glaubitt, W. and Schubert, U., J. Non-Cryst. Solids 145, 85 (1992). (b) F. Schwertfeger, N. Hiising and U. Schubert, J. Sol-Gel Sei. Technol., in press, (c) F. Schwertfeger, A. Emmerling, J. Gross, U. Schubert and J. Fricke, in Sol-Gel Processing and Applications edited by Y.A. Attio (Plenum Press, New York 1994), in press, (d) F. Schwertfeger, J. Kuhn, V. Bock, M.C. Arduini-Schuster, E. Seyfried, U. Schubert and J. Fricke, Proc. 22nd Int. Therm.Cond.Conf.. 1994, in press.Google Scholar
5 Loy, D.A., Shea, K.J. and Russick, E.M., Mat. Res. Soc. Symp. Proc. 271, 699 (1992).Google Scholar
6 Engelhardt, G., Michl, D., High Resolution Solid State NMR of Silicates and Zeolithes (Wiley, Chichester, 1987).Google Scholar
7 Tuinstra, F., Koenig, J.I., J. Chem. Phys. 53, 1126 (1970).Google Scholar