Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T10:34:28.167Z Has data issue: false hasContentIssue false

Ink-jet Printed BaTiO3 for Photonics

Published online by Cambridge University Press:  28 May 2012

Petra Lommens
Affiliation:
SCRiPTS, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 – S3, 9000 Gent, Belgium.
Tom Bruggeman
Affiliation:
SCRiPTS, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 – S3, 9000 Gent, Belgium.
Glenn Pollefeyt
Affiliation:
SCRiPTS, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 – S3, 9000 Gent, Belgium.
Melis Arin
Affiliation:
SCRiPTS, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 – S3, 9000 Gent, Belgium.
Jonas Feys
Affiliation:
SCRiPTS, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 – S3, 9000 Gent, Belgium.
Isabel Van Driessche
Affiliation:
SCRiPTS, Department of Inorganic and Physical Chemistry, Ghent University, Krijgslaan 281 – S3, 9000 Gent, Belgium.
Get access

Abstract

A water-based BaTiO3 precursor solution, suited for ink-jet printing of hetero-epitaxial BaTiO3 layers on LaAlO3 single-crystal substrates was developed. First, a study on the simultaneous stabilization of Ba2+ and Ti4+ions in a neutral, aqueous environment was performed. Thermal analysis of the precursor was used to select appropriate temperature programs and the rheology of the solutions is studied to optimize dipcoating and later ink-jet printing parameters. On both substrates, it was possible to obtain epitaxial layers of about 200 nm thickness after sintering at temperatures above 1000 °C. Currently, we are adapting the thermal program and heating atmosphere in order to reduce the sintering temperatures, decrease the surface roughness and increase density.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gupta, M. C. and Ballato, J., The handbook of photonics, 2nd edition ed. (Taylor & Fracis group, LLC, 2006), pp. 6-1-66.Google Scholar
Wessels, B. W., Annual Review of Materials Research 37, 659679 (2007).CrossRefGoogle Scholar
Arin, M., Lommens, P., Avci, N., Hopkins, S. C., De Buysser, K., Arabatzis, I. M., Fasaki, I., Poelman, D. and Van Driessche, I., J. Eur. Ceram. Soc. 31, 10671074 (2011).CrossRefGoogle Scholar
Kirchner, A., Arin, M., Lommens, P., Granados, X., Ricart, S., Holzapfel, B. and Van Driessche, I., J. Alloy. Compd. 516, 1619 (2011).CrossRefGoogle Scholar
Feys, J., Vermeir, P., Lommens, P., Hopkins, S. C., Granados, X., Glowacki, B. A., Baecker, M., Reich, E., Ricard, S., Holzapfel, B., Van der Voort, P. and Van Driessche, I., J. Mater. Chem. 22, 37173726 (2012).CrossRefGoogle Scholar
Reis, N., Ainsley, C. and Derby, B., J. Appl. Phys. 97, 094903 (2005).CrossRefGoogle Scholar
Stringer, J. and Derby, B., J. Eur. Ceram. Soc. 29, 913918 (2009).CrossRefGoogle Scholar
Fu, Z., Wu, A. Y. and Vilarinho, P. M., Chem. Mater. 18, 33433350 (2006).CrossRefGoogle Scholar
Fujihara, S., Schneller, T. and Waser, R., Appl. Surf. Sci. 221, 178183 (2004).CrossRefGoogle Scholar
Ong, R. J., Dawley, J. T. and Clemk, P. G., J. Mater. Res. 18, 23102317 (2003).CrossRefGoogle Scholar
Hasenkox, U., Hoffmann, S. and Waser, R., J. Sol-Gel Sci. and Technol. 12, 6779 (1998).CrossRefGoogle Scholar
Tang, P. S., Towner, D. J., Meier, A. L. and Wessels, B. W., Ieee Photonics Technology Letters 16, 18371839 (2004).CrossRefGoogle Scholar
Petraru, A., Schubert, J., Schmid, M. and Buchal, C., Appl. Phys. Lett. 81, 13751377 (2002).CrossRefGoogle Scholar
Wessels, B. W., Journal of Crystal Growth 195, 706710 (1998).CrossRefGoogle Scholar
Hiltunen, J., Seneviratne, D., Sun, R., Stolfi, M., Tuller, H. L., Lappalainen, J. and Lantto, V., Journal of Electroceramics 22, 416420 (2009).CrossRefGoogle Scholar
Arin, M., Lommens, P., Avci, N., Hopkins, S. C., De Buysser, K., Arabatzis, I. M., Fasaki, I., Poelman, D. and Van Driessche, I., J. Eur. Cer. Soc 31, 10671074 (2011).CrossRefGoogle Scholar
Schwartz, R. W., Clem, P. G., Voigt, J. A., Byhoff, E. R., Van Stry, M., Headley, T. J. and Missert, N. A., Journal of the American Ceramic Society 82 (9), 23592367 (1999).CrossRefGoogle Scholar
Gablenz, S., Abicht, H. P., Pippel, E., Lichtenberger, O. and Woltersdorf, J., J. Eur. Ceram. Soc. 20, 10531060 (2000).CrossRefGoogle Scholar
Windle, J. and Derby, B., Journal of Materials Science Letters 18, 8790 (1999).CrossRefGoogle Scholar
Beckers, L., Schubert, J., Zander, W., Ziesmann, J., Eckau, A., Leinenbach, P. and Buchal, C., J. Appl. Phys. 83, 33053310 (1998).CrossRefGoogle Scholar
Hiltunen, J., Karppinen, M., Karioja, P., Lappalainen, J., Puustinen, J., Lantto, V. and Tuller, H. L., in Silicon Photonics and Photonic Integrated Circuits, edited by Righini, G. C., Honkanen, S. K., Pavesi, L. and Vivien, L. (Spie-Int Soc Optical Engineering, Bellingham, 2008), Vol. 6996, pp. H9960H9960.CrossRefGoogle Scholar