Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-11T02:19:18.765Z Has data issue: false hasContentIssue false

Injection-Level Spectroscopy of Metal Impurities in Silicon

Published online by Cambridge University Press:  10 February 2011

R.K. Ahrenkiel
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
S. Johnston
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401
Get access

Abstract

Using a modified photoconductive eddy-current technique, excess carrier decay can be measured and used to identify the specific defect dominating recombination. As the dynamic range of the measurement system is linear over about three orders of magnitude, the injection-level spectroscopy technique can be performed in a single measurement for rapid defect identification.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schroder, D.K., IEEE Trans. on Elec. Dev. 44, 160 (1997).Google Scholar
2. Ferenczi, G., Pavelka, T., and Tutto, P., Japanese Journ. of Appl. Phys. 30, 3630 (1991).Google Scholar
3. Ahrenkiel, R.K., AlP Conference Proceedings 394, p. 225, AlP Press, (1997).Google Scholar
4. Dziewior, J. and Schmid, W., Appl. Phys. Lett. 31, 346 (1977).Google Scholar
5. Shockley, W. and Read, W. T., Phys. Rev. 87, 835, (1952).Google Scholar
6. Hall, R.N., Phys. Rev. 87, 387 (1952).Google Scholar
7. Ahrenkiel, R.K., Keyes, B.M., and Dunlavy, D.J., J. AppL. Phys. 70, 225 (1991).Google Scholar
8. Zoth, G. and Berghold, W., J. App1. Phys. 67, NH1, p. 6764 (1990).Google Scholar
9. Wunstel, K. and Wagner, P., Appl. Phys. A, 27, p. 207, (1982).Google Scholar
10. Kitagawa, H., Tanaka, S., and Ni, B., Jpn. J. Appl. Phys. 32, L1645, (1993).Google Scholar
11. Kitagawa, H., Kimerling, L.C., and Tanaka, S., J. Electron Mater. 21, 863 (1992).Google Scholar
12. Rotondar, A.L.P., Hurd, T.Q., Kanaiava, A., Vanhellemont, J., Simoen, E., Heyns, M.M., Clayes, C., and Brown, G., J. Electrochem. Soc. 143, 3014 (1996).Google Scholar
13. Kunz, M. and Beck, G., J. Appl. Phys. A, 3558 (1986).Google Scholar
14. Horanyi, T.S., Tutto, P., and Kovacsics, C., J. Electrochem. Soc. 143, 216 (1996).Google Scholar
15. Ahrenkiel, R.K., Semiconductors and Semimetals 39, pp. 39150, Academic Press, New York, Ahrenkiel, R. K. and Lundstrom, M. S., Eds.Google Scholar
16. Ahrenkiel, R.K., Keyes, B.M., and Dunlavy, D.J., J. Appl. Phys. 76, 225, (1991).Google Scholar
17. Ahrenkiel, R.K., Keyes, B.M., and Dunlavy, D.J., Solar Cells 30, 163, (1991).Google Scholar
18. Daio, H., Yakushiji, K., Buckzkowski, A., and Shimura, F., Materials Science Forum 196–201, p. 1817, (1995) Trans Tech Publications, Switzerland.Google Scholar
19. Rotondar, A.L.P., Hurd, T.Q., Kaniava, A., Vanhellemont, J., Simoen, E., Heyns, M.M., and Claeys, C., J. Electrochem. Soc. Vol. 143, 3014 (1996).Google Scholar
20. Stephens, A.W., Aberle, A.G., and Green, M.A., J. Appl. Phys. 76, 363 (1994).Google Scholar
21. M'saad, H., Michel, J., Lappe, J.J., and Kimerling, L.C., J. of Electronic Materials, 23, 487 (1994).Google Scholar
22. Daio, H., Yakushiji, K., Buczkowski, A., and Shimura, F., Materials Science Forum, V196–201, p. 1817 (1995).Google Scholar
23. Ciszek, T.F., Wang, T.H., Ahrenkiel, R.K., and Matson, R., Twenty-Fifth IEEE Photovoltaic Specialists Conference-1996, p. 737 (1996).Google Scholar