Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-12T13:07:05.479Z Has data issue: false hasContentIssue false

Initial Stages of InAs Quantum Dots Evolution in GaAs/AlAs Matrixes

Published online by Cambridge University Press:  11 February 2011

Michael Yakimov
Affiliation:
UAlbany Institute for Materials, University at Albany - SUNY, Albany NY, 12203, USA
Vadim Tokranov
Affiliation:
UAlbany Institute for Materials, University at Albany - SUNY, Albany NY, 12203, USA
Alex Katnelson
Affiliation:
UAlbany Institute for Materials, University at Albany - SUNY, Albany NY, 12203, USA
Serge Oktyabrsky
Affiliation:
UAlbany Institute for Materials, University at Albany - SUNY, Albany NY, 12203, USA
Get access

Abstract

We have studied the first phases of post-growth evolution of InAs quantum dots (QDs) using in-situ Auger electron spectroscopy in conjunction with Reflection High Energy Electron Diffraction (RHEED). Direct evidence for InAs intermixing with about 6ML (monolayers) of the matrix material is found from Auger signal behavior during MBE overgrowth of InAs nanostructures. Re-establishment of 2D growth mode by overgrowth with GaAs or AlAs was monitored in single-layer and multi-layer QD structures using RHEED. Decay process of InAs QDs on the surface is found to have activation energy of about 1.1 eV that corresponds to In intermixing with the matrix rather than evaporation from the surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bimberg, D., Grundmann, M., Heinrichsdorff, F., Ledentsov, N. N., Ch., Ribbat, and Sellin, R., Zh. I., Alferov, Kop'ev, P. S., Maximov, M. V., Ustinov, V. M., and Zhukov, A. E. and Lott, J. A., AIP Conf. Proc. Vol. 560, Issue 1, pp. 178197 (2001)Google Scholar
2. Zhengmao Ye Joe, C., Campbell Zhonghui, Chen, Eui-Tae, Kim, and Anupam, Madhukar, J. Appl. Phys., 92, 4141, (2002)Google Scholar
3. Shih-Yen, Lin, Yao-Jen, Tsai, and Si-Chen, Lee, Jap. J.Appl. Phys, Part 2: Letters, 40, L1290–L1292 (2001)Google Scholar
4. Tokranov, V., Yakimov, M., Katsnelson, A., Dovidenko, K., Todt, R. and Oktyabrsky, S., Quatum Dot Devices and Computing Proceedings of SPIE, Vol.4656, pp.7988 (2002)Google Scholar
5. Hofmanna, S. and SchubertJ, J.. Vac. Sci. Technol. A 16, 1096 (1998)Google Scholar
6. Muraki, K., Fukatsu, S., Shirakia, Y., and Ito, R., Appl. Phys. Lett. 61, 557 (1992)Google Scholar
7. Rosenauer, A., Van Dyck, D., Gerthsen, D., Arzberger, M., Bohm, G. and Abstreiter, G. Phys. Status Solidi B 224, 213 (2001)Google Scholar
8. Schowalter, M., Rosenauer, A., and Gerthsen, D., Arzberger, M., Bichler, M., and Abstreiter, G. Appl. Phys. Lett., 79, 44264428 (2001)Google Scholar
9. Hao, Lee, Roger, Lowe-Webb, Weidong, Yang, and Peter C., Sercel, Appl. Phys. Lett. 72, 812814 (1998)Google Scholar
10. Ballet, P., Smathers, J.B., Yang, H., Workman, C.L. and Salamo, G.J., J. Appl. Phys., 90, 781 (2001)Google Scholar
11. Yakimov, M., Tokranov, V., and Oktyabrsky, S.. in Growth, Evolution, and Properties of Surfaces, Thin Films, and Self-Organized Structures, Mater. Res. Soc. Proc., 648 (2001) P2.6.16.Google Scholar
12. Joice, B.A., in “Molecular Beam Epitaxy and Heterostructures“, edited by Chang, L. and Ploog, K., (1985)Google Scholar
13. Ballet, P., Smathers, J.B. and Salamo, G.J., Appl. Phys. Lett., 75, 337339 (1999)Google Scholar