Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-19T02:01:43.787Z Has data issue: false hasContentIssue false

Initial Stages of Growth of Thin Films of III-V Nitrides and Silicon Carbide Polytypes by Molecular Beam Epitaxy

Published online by Cambridge University Press:  21 February 2011

Robert F. Davis
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7907, Raleigh, NC 27695–7907, USA
K. S. Ailey
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7907, Raleigh, NC 27695–7907, USA
R. S. Kern
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7907, Raleigh, NC 27695–7907, USA
D. J. Kester
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7907, Raleigh, NC 27695–7907, USA
Z. Sitar
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7907, Raleigh, NC 27695–7907, USA
L. Smith
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7907, Raleigh, NC 27695–7907, USA
S. Tanaka
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7907, Raleigh, NC 27695–7907, USA
C. Wang
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Box 7907, Raleigh, NC 27695–7907, USA
Get access

Abstract

The morphology and interface chemistry occurring during the initial deposition of BN, AlN and GaN films via metal evaporation and N2 decomposition under UHV conditions have been determined. FTIR spectroscopy and TEM revealed the consecutive deposition of an initial 20Å layer of a-BN, 20–60Å of oriented h-BN, and a final layer of polycrystalline c-BN. This sequence is attributed primarily to increasing intrinsic compressive stress in the films. XPS analysis revealed the growth of GaN on sapphire to occur via the Stranski-Krastanov mode; growth on SiC showed characteristics of three-dimensional growth. AlN grew layer-by-layer on both substrates. Vicinal 6H-SiC(0001) substrate surfaces contain closely spaced, single bilayer steps. During deposition of Si and C at 1050°C, 6H layers initially form and step bunching occurs. The latter phenomenon results in more widely spaced steps, the nucleation of 3C-SiC both on the new terraces and at the larger steps and formation of double position boundaries. The C/Si ratio in the gaseous reactants also affects the occurrence of these three phenomena.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vel, L., Demazeau, G. and Etourneau, J., Materials Science and Engineering B10, 149 (1991)Google Scholar
2. Era, K., Mishima, O., Wada, Y., Tanaka, J. and Yamaoka, S. in Electroluminescence, edited by Shionoya, and Kobayashi, H., Springer Proceedings in Physics Vol. 38 (Springer-Verlag, Berlin, 1989), p. 386.Google Scholar
3. Inagawa, K., Watanabe, K., Ohsone, H., Saitoh, K., and Itoh, A., J. Vac. Sci. Technol. A5, 2696 (1987).Google Scholar
4. Kester, D. J. and Messier, R., in Phase Formation and Modification by Beam-Solid Interactions, edited by Was, G. S., Rehn, L. E. and Follstaedt, D. (Mater. Res. Soc. Proc. 235, Pittsburgh, PA, 1992) 721.Google Scholar
5. Wada, T. and Yamashita, N., J. Vac. Soc. Technol. A10, 515 (1992).Google Scholar
6. Bewilogua, K., Buth, J., Hübsch, H., and Grischke, M., Diamond and Related Mater. 2, 1206 (1993).Google Scholar
7. Murakawa, M., Watanabe, S. and Miyake, S., Diamond Films and Technol. 1, 55 (1991).Google Scholar
8. Doll, G. L., Sell, J. A., Taylor, C. A. II, and Clarke, R., Phys. Rev. B 43, 6816 (1991).Google Scholar
9. Friedmann, T. A., McCarty, K. F. and Klaus, E. J., App. Phys. Letts 61, 2406 (1992).Google Scholar
10. Osaka, Y., Okamoto, M. and Utsumi, Y., in Low Energy Ion Beam and Plasma Modification of Materials, edited by Harper, J. M. E., Miyake, K., McNeil, J. R. and Gobatkin, S. M. (Mater. Res. Soc. Proc. 223, Pittsburgh, PA, 1991) 81.Google Scholar
11. Saitoh, H. and Yarborough, W., App. Phys. Lett. 58, 2228 (1991).Google Scholar
12. McKenzie, D. R., McFall, W. D., Sainty, W. G., Davis, C. A. and Collins, R. E., Dia. Rel. Mater. 2, 970 (1993).Google Scholar
13. McKenzie, D. R., J. Vac. Sci. Technol. B11, 1928 (1993).Google Scholar
14. Kester, D. J., Ailey, K. S., Davis, R. F. and More, K. L., J. Mater. Res. 8, 1213 (1993).Google Scholar
15. Kester, D. J. and Messier, R., J. Appl. Phys. 72, 504 (1992).Google Scholar
16. Yoshida, S., Misawa, S. and Gonda, S., J. Appl. Phys. 53, 5844 (1982).Google Scholar
17. Khan, M. R. H., Koide, Y., Itoh, H., Sawaki, N. and Akasaki, I., Solid State Comm. 60, 509 (1986).Google Scholar
18. Koide, Y., Itoh, H., Khan, M. R. H., Hiramatsu, K., Sawaki, N. and Akasaki, I., J. Appl. Phys. 61, 4540 (1987).Google Scholar
19. Kern, W. and Puo-tinen, D. A., RCA Rev. 31, 187 (1970).Google Scholar
20. Van Vechten, D., Hubler, G. K. and Donovan, E. P., Vacuum 36, 841 (1986).Google Scholar
21. Geick, R. and Perry, C. H., Phys. Rev. 146, 543 (1966).Google Scholar
22. Gielisse, P. J., Mitra, S. S., Plendl, J. N., Griffis, R. D., Mansur, L. C., Marshall, R. and Pascoe, E. A., Phys. Rev. 155, 1039 (1967).Google Scholar
23. Eaglesham, D., Gossman, H.-J and Cerallo, M., J. Appl. Phys. 65, 1227 (1990).Google Scholar
24. McKenzie, D. R., Muller, D. A., Kravtchinskaia, E., Segal, D., Cockayne, D. J. H., Amaratunga, G. and Silva, R., Thin Solid Films 206, 198 (1991).Google Scholar
25. Cuomo, J. J., Doyle, J. P, Bruley, J. and Liu, J. C, Appl. Phys. Lett. 58, 466 (1991).Google Scholar
26. Heine, V., Cheng, C. and Needs, R. J., J. Am. Ceram. Soc. 74, 2630 (1991).Google Scholar
27. Kaplan, R., Surf. Sci. 215, 111 (1989).Google Scholar