Hostname: page-component-7bb8b95d7b-wpx69 Total loading time: 0 Render date: 2024-09-12T05:21:25.219Z Has data issue: false hasContentIssue false

Initial Stages of Gaas Growth on Scl-XErxas Surfaces

Published online by Cambridge University Press:  25 February 2011

Terje G Finstad
Affiliation:
On site from University of Oslo, Dept. of Physics, P. O. Box 1048, Blindern, 0316 Oslo 3, Norway;
C. J. Palmstrøm
Affiliation:
Bellcore, Red Bank, NJ 07701;
S. Mounier
Affiliation:
Ecole Nationale Supérieure d’Electronique et de Radiodléctricité, Grenoble, France;
V. G. Keramidas
Affiliation:
Bellcore, Red Bank, NJ 07701;
J. G. Zhu
Affiliation:
Cornell University, Dept. of Materials Science and Engineering, Ithaca, NY 14853;
C. B. Carter
Affiliation:
Cornell University, Dept. of Materials Science and Engineering, Ithaca, NY 14853;
Get access

Abstract

Lattice matched ScxEr1-xAs (ScErAs) was grown on GaAs by MBE followed by a GaAs overlayer. The overgrowth of GaAs on ScErAs has been studied by Reflection High Energy Electron Diffraction (RHEED), Low Energy Electron Diffraction (LEED), Auger Electron Spectroscopy (AES), Nomarskii-interference microscopy and Transmission Electron Microscopy (TEM). In this study substrate temperature and crystal orientation have been varied. For GaAs growth on (100)ScErAs there is a strong tendency for island formation and three dimensional (3D) growth. For high substrate temperatures (>500 °C) and for moderate growth rates (10 ML/min) the growth can be described by the Volmer-Weber mode. For lower substrate temperatures we observe that one monolayer of GaAs on ScErAs is metastable. This monolayer shows a (3×1)/(1×3) surface reconstruction. The deposition of more than one monolayer, irrespective of substrate temperature, or the raising of the substrate temperature induces island growth. The metastable reconstructed surface layer of GaAs then partly dissolves into the islands. The strong tendency for 3D growth observed here is very similar to that seen in the growth on ErAs which is not lattice matched to GaAs. This observation demonstrates the significance of electronic bonding mismatch over lattice mismatch for heteroepitaxy between materials with ionic and covalent bonding character. Growth on {111}-polar surfaces yields smoother layers and a stronger tendency for 2D growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Palmstrøm, C. J., Fimland, B.-O., Sands, T., Garrison, K. C. and Bartynski, R. A., J. Appl. Phys., 65, 4753 (1989)Google Scholar
2 Chambers, S. Y., J. Vac. Sci. Technol., B7, 737 (1989)Google Scholar
3 Corre, A. L., Caulet, J. and Guivarc’h, A., Appl. Phys. Lett., 55, 2298 (1989)Google Scholar
4 Kuznia, J. N., Wowchak, A. M. and Cohen, P. I., J. Electronic Materials, 19, 561 (1990)Google Scholar
5 Guivarc’h, A., Caulet, J. and Corre, A. L., Electronics Letters, 25, 1050 (1989)Google Scholar
6 Palmstrøm, C. J., Mounier, S., Finstad, T. G. and Miceli, P. F., Appl. Phys. Lett., 56, 382 (1990)Google Scholar
7 Sands, T., Palmstrøm, C. J., Harbison, J. P., Keramidas, V. G., Tabatabaie, N., Cheeks, T. L., Ramesh, R. and Silberberg, Y., Materials Science Reports, 5, 98 (1990)Google Scholar
8 Huberman, M. and Maserjian, M., Phys. Rev., B37, 9065 (1988)Google Scholar
9 Tabatabaie, N., Harbison, J. P., Gilchrest, H. L., Florez, L. T. and Keramidas, V. G., Appl. Phys. Lett., 54, 2112 (1989)Google Scholar
10 Palmström, C. J., Tabatabaie, N. and Allen, S. J., Appl. Phys. Lett., 53, 2608 (1988)Google Scholar
11 Palmström, C. J., Garrison, K. C., Mounier, S., Sands, T., Schwarz, C. L., Tabatabaie, N., Allen, S. J., , H. L. G. Jr. and Miceli, P. F., J. Vac. Sci. Technol., B7, 747 (1989)Google Scholar
12 Ralston, J. D., Ennen, H., Wennekers, P., Hiesinger, P., Herres, N., Schneider, J., Müller, H. D., Rothemund, W., Fuchs, F., Schmälzlin, J. and Thonke, K., J. Electron. Mater., 19, 555 (1990)Google Scholar
13 Sinharoy, S., Thin Solid Films, 187, 231 (1990)Google Scholar
14 Métois, J. J., Heyrand, J. C. and Kern, R., Surf. Sci., 78, 191 (1978)Google Scholar
15 Zhu, J. G., Carter, C. B., Palmstrøm, C. J. and Mounier, S., Appl. Phys. Lett., 56, 1323 (1990)Google Scholar
16 Palmstrøm, C. J., Cheeks, T. L., Finstad, T. G., Gilchrest, H. L., Miceli, P. F., Stoffel, N. G., Nahory, R. E., Wilkens, B. J., Martinez, J. A., Florez, L. T., Keramidas, V. G., Zhu, J. G. and Carter, C. B., paper presented at Electronic Materials Conference, Santa Barbara, California (June 27–29, 1990)Google Scholar
17 Bauer, E., Z. Kristallogr., 110, 372 (1958)Google Scholar