Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-22T13:04:45.305Z Has data issue: false hasContentIssue false

InGaN Double-Heterostructures and Dh-Leds on Hvpe Gan-on-Sapphire Substrates

Published online by Cambridge University Press:  10 February 2011

K. S. Boutros
Affiliation:
ATMI, 7 Commerce Dr., Danbury, CT 06810.
J. S. Flynn
Affiliation:
ATMI, 7 Commerce Dr., Danbury, CT 06810.
V. Phanse
Affiliation:
ATMI, 7 Commerce Dr., Danbury, CT 06810.
R. P. Vaudo
Affiliation:
ATMI, 7 Commerce Dr., Danbury, CT 06810.
G. M. Smith
Affiliation:
ATMI, 7 Commerce Dr., Danbury, CT 06810.
J. M. Redwing
Affiliation:
ATMI, 7 Commerce Dr., Danbury, CT 06810.
T. R. Tolliver
Affiliation:
Dept. of Electrical and Com. Eng., Univ. of Mass. at Amherst, Amherst, MA 01003.
N. G. Anderson
Affiliation:
Dept. of Electrical and Com. Eng., Univ. of Mass. at Amherst, Amherst, MA 01003.
Get access

Abstract

We report on the growth of InGaN films, and the fabrication and characterization of GaN homojunction LEDs and InGaN double heterostructure (DH) LEDs on HVPE GaNon- sapphire substrates. The use of these substrates facilitates the III-nitrides growth process, as it avoids the use of complicated buffer layers. We have achieved InGaN films with strong and sharp band-to-band photoluminescence (PL) from 370 to 540 nm. Typical In 0.o9Ga0. g9N/GaN DH films had double-crystal XRD FWHM ∼ 300 arcsec, and 400 nm peak PL emission with FWHM ∼ 100 meV. DH-LEDs were fabricated with InGaN layers with various compositions, and produced strong electroluminescence (EL) in the blue and blue/green regions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Vaudo, R.P., Phase, V.M., Redwing, J.M., J. Speck. Second Int. Conf. On Nitride Semiconductors, Tokushima, Japan, Oct. 1997.Google Scholar
2 Safi, S.A., Redwing, J.M., Tischler, M.A., and Kuech, T.F.. Mat. Res. Soc. Proc. GaN and Related Materials, 395 (1996).Google Scholar
3 Yoshimoto, N., Matsuoka, T., Sasaki, T., and Katsui, K.. Appl. Phys. Lett. 59 2251 (1991).Google Scholar
4 Nakamura, S., and Mukai, T.. Jpn. J. Appl. Phys. 31 L1457 (1992).Google Scholar
5 Matsuoka, T., Yoshimoto, N., Sasaki, T., and Katsui, A., J. Electron. Mat. 21, 157 (1992).Google Scholar
6 Keller, S., Keller, B.P., Kapolnek, D., Abare, A.C., Masui, H., Coldren, L.A., Mishra, U.K., and Baars, S.P. Den. Appl. Phys. Lett. 68 (22), 3147 (1996).Google Scholar
7 Piner, E.L., McIntosh, F.G., Roberts, J.C., Boutros, K.S., Aumer, M.A., Joshkin, V.A., EI-Masry, N.A., Bedair, S.M., and Liu, S.. Fall 96 MRS symposium proceedings on III-V nitrides, 449 85(1996).Google Scholar
8 Piner, E.L., Behbehani, M.K., EI-Masry, N.A., McIntosh, F.G., Roberts, J.C., Boutros, K.S., and Bedair, S.M.. Appl. Phys. Lett. 70 (4), 461 (1997).Google Scholar
9 Nakamura, S., and Mukai, T.. Jap. Journ. Appl. Phys. 31, L1457 (1992).Google Scholar
10 Osamura, K., Naka, S., and Murakami, Y.. Journ. Appl. Phys. 46 (8), 3432 (1975).Google Scholar