Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-18T09:16:48.526Z Has data issue: false hasContentIssue false

Infrared Study of Trimethylgallium Adsorption on GaAs(100)

Published online by Cambridge University Press:  22 February 2011

Paul E. Gee
Affiliation:
Chemical Engineering Department, 5531 Boelter Hall, University of California, Los Angeles, CA 90024
Haihua Qi
Affiliation:
Chemical Engineering Department, 5531 Boelter Hall, University of California, Los Angeles, CA 90024
Robert F. Hicks
Affiliation:
Chemical Engineering Department, 5531 Boelter Hall, University of California, Los Angeles, CA 90024
Get access

Abstract

Trimethylgallium (TMGa) adsorption on GaAs(100) has been studied by infrared spectroscopy. The adsorbed TMGa exhibits up to five C-H stretching vibrations between 2700 and 3000 cm−1 and five C-H deformations between 1100 and 1500 cm−1. The adsorbate uptake is a maximum at arsenic coverages of –65%. These and other results indicate that TMGa dissociatively adsorbs onto As dimers with methyl transfer to second-layer Ga atoms and to As atoms. Above 333 K, molecular desorption competes with adsorption, causing the saturation coverage to fall with increasing temperature. The desorption kinetics depend on the composition of the GaAs(100) surface. These kinetics suggest that above 773 K, TMGa is more likely to decompose on the c(2×8) than on a more Ga-rich surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tewell, J.L., Harbinson, J.B., Schers, A., and Florez, L.T., IEEE Quant. Electr. 27, 1332 (1991).Google Scholar
2. Keuch, T.F., Mater. Sci. Rep. 2, 1 (1987); and Proc. IEEE 80, 1609 (1992).Google Scholar
3. Larsen, C.A., Buchan, N.I. and Stringfellow, G.B., Appl. Phys. Lett. 52, 480 (1988); C.A. Larsen, S.H. Li, N.I. Buchan, G.B. Stringfellow and D.W. Brown, J. Crystal Growth 102, 126 (1990).Google Scholar
4. Yu, M.L., Memmert, U. and Kuech, T.F., Appl. Phys. Lett. 55, 1011 (1989); U. Memmert and M.L Yu, Appl. Phys Lett. 56, 1883 (1990); M.L. Yu, U. Memmert, N.I. Buchan and T.F. Kuech, Mater. Res. Soc. Symp. Proc. 204, 37 (1991).Google Scholar
5. McCaulley, J.A., McCrary, V.R. and Donnelly, V.M., J. Phys. Chem. 93, 1148 (1989); J.A. McCaulley, R.J. Shul and V.M. Donnelly, J. Vac. Sci. Technol. A 9 (1991) 2872.Google Scholar
6. Creighton, J. R., Surf. Sci. 234, 287 (1990); J.R. Creighton and B.A. Banse, Mater. Res. Soc. Symp. Proc. 222, 15 (1991); J.R. Creighton, J. Vac. Sci. Technol. A 9, 2895 (1991); J.R. Creighton, B. A. Bansenauer, T. Huett and J.M. White, J. Vac. Sci. Technol. A 11, 867 (1993).Google Scholar
7. Wolf, M., Zhu, X.-Y., Huett, T. and White, J.M., Surf. Sci. 275, 41 (1991); X.-Y. Zhu, J.M. White and J.R. Creighton, J. Vac. Sci. Technol. A 10, 316 (1992).Google Scholar
8. Bachrach, R.Z., Bauer, R.S., Chiaradia, P. and Hansson, G.V., J. Vac. Sci. Technol. 19, 335 (1981).Google Scholar
9. Ihm, J., Chadi, D.J. and Joannopoulas, J., Phys. Rev. B 27, 5119 (1983); D.J. Chadi, J. Vac. Sci. Technol. A 5, 834 (1987); G.X. Qian, R. Martin and D.J. Chadi, Phys. Rev. B 38, 7649 (1988).Google Scholar
10. Pashley, M.D., Haberem, K.W., Friday, W., Woodall, J.M. and Kirchner, P.D., Phys. Rev. Lett. 60, 2176 (1988); M.D. Pashley, K.W. Haberern and J.M. Gaines, Surf. Sci. 267, 153 (1992).Google Scholar
11. Biegelsen, D.K., Bringans, R.D., Northrup, J.E. and Swartz, L.E., Phys. Rev. B 41, 5701 (1990).Google Scholar
12. Gee, P.E. and Hicks, R.F., J. Vac. Sci. Technol. A 10, 892 (1992); H. Qi, P.E. Gee and R.F. Hicks, Phys. Rev. Lett. 72, 250 (1994).Google Scholar
13. Kvisle, S. and Rytter, E., Spectrochim. Acta 40A, 939 (1984).Google Scholar
14. Tripathi, A., Mazzarese, D., Conner, W.C. and Jones, K.A., J. Electron. Mater. 18, 45 (1989).Google Scholar
15. Stienstra, J., Lewis, B.S. and Aarts, J.F. M., J. Vac. Sci. Technol. A 10, 920 (1992).Google Scholar
16. Rojhantalab, H. and Nibler, J.W., Spectrochim. Acta 32A, 947 (1976).Google Scholar
17. Gee, P.E., Qi, H. and Hicks, R.F. (unpublished).Google Scholar
18. Matteson, D.S., Organometallic Reaction Mechanisms, (Academic Press, New York, 1974), p. 11.Google Scholar
19. Bock, C.W., Trachtman, M. and Mains, G.J., J. Phys. Chem. 96, 3007 (1992).Google Scholar
20. Boudart, M. and Dega-Mariadassou, G., Kinetics of Heterogeneous Catalytic Reactions, (Princeton University Press, New Jersey, 1984), p. 55.Google Scholar