Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-23T13:27:02.959Z Has data issue: false hasContentIssue false

Infrared Optical Studies of Semiconductors at Large Hydrostatic Pressures

Published online by Cambridge University Press:  10 February 2011

E. E. Haller
Affiliation:
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
M. D. McCluskey*
Affiliation:
Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
*
* Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo Alto, CA 94304 USA
Get access

Abstract

Among the various external disturbances used in the study of semiconductors, including electric and magnetic fields as well as uniaxial pressure, large hydrostatic pressures can be employed to induce dramatic changes in host lattice, dopant and defect properties. Diamond anvil cells with an appropriate pressure medium (e.g. liquid N2 or alcohol mixtures) allow the application of pressures up to hundreds of kbar. In this pressure range the global conduction band minimum of a semiconductor can become a local minimum. GaAs for example changes near 45 kbar from a direct (Γ-band) to an indirect (X-band) semiconductor. Donors in GaAs and InP transform from their shallow, hydrogenic state to the DX configuration at hydrostatic pressures near 23 and 82 kbar, respectively. This donor configuration change has been studied using local vibrational mode (LVM) spectroscopy in the far infrared region of the electromagnetic spectrum. Recently we have investigated several LVM's of H-containing complexes in GaAs as a function of hydrostatic pressure at liquid He temperatures. Depending on the specific complex we find the LVM frequencies to vary either linearly, sub- or superlinearly with hydrostatic pressure. In the case of O in Si the vibrational mode changes its character from that of a harmonic oscillator to a rotor as pressure is applied. The implications of the pressure dependences of LVM's are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Newman, R.C., Adv. Phys. 18, 545 (1969); see alsoGoogle Scholar
Newman, R.C., Infrared Studies of Crystal Defects. (Taylor and Francis, London, 1973) andGoogle Scholar
Festkörperprobleme XXV (Advances in Solid State Physics), edited by Grosse, D., (Vieweg, Braunschweig, 1985).Google Scholar
2. Haller, E.E., in Defect and Impurity Engineered Semiconductors and Devices, edited by Ashok, S., Chevallier, J., Akasaki, I., Johnson, N.M. and Sopori, B.L., (Mater. Res. Soc. Proc. 378, Pittsburgh, PA, 1995), Materials Research Proc. Vol. 378, 547–65.Google Scholar
3. Jayaraman, A., Rev. Mod. Phys. 55, 65 (1983).Google Scholar
4. Johnson, N.M., Shan, W., and Yu, P.Y., Semicond. Sci. Technol. 4, 1036 (1989).Google Scholar
5. Hsu, L., Zehender, S., Bauser, E., and Haller, E.E., Phys. Rev. B 55, 10515 (1997).Google Scholar
6. Haller, E. E., Hsu, Leonardo, and Wolk, J. A., Proc. 7th Intl. Conf. on High Pressure Semiconductor Physics. HPSP-VII, Schwäbisch-Gmünd, July 28–31, 1996, in physica stat. solidi (b) 198, 153 (1996).Google Scholar
7. Wolk, J.A., Krüger, M.B., Heyman, J.N., Walukiewicz, W., Jeanloz, R., and Haller, E.E., Phys. Rev. Lett. 66, 774 (1991).Google Scholar
8. Wolk, J.A., Walukiewicz, W., Thewalt, M. L. W. and Haller, E. E., Phys. Rev. Lett. 68, 3619 (1992).Google Scholar
9. Barker, A.S. Jr and Sievers, A.J., Rev. Modern Physics 47, Suppl. 2 (1975), andGoogle Scholar
Spitzer, W.G., Festkörperprobleme XI. (Advances in Solid State Physics), edited by Madelung, O., (Pergamon, Vieweg, Germany, 1971).Google Scholar
10. Haegel, N.M., Performance and Materials Aspects of Ge:Be and Ge:Ge Photoconductors for Far Infrared Detectors. MS thesis, UC Berkeley and Lawrence Berkeley Laboratory, Report #16694 (1983).Google Scholar
11. Merül, L. and Bassett, W. A., Rev. Sci. Instr. 45, 290 (1974).Google Scholar
12. Sterer, E., Pasternak, M.P., and Taylor, R.D., Rev. Sci. Instr. 61, 1117 (1990).Google Scholar
13. Schiferl, D., Cromer, D.T., and Mills, R.L., High Temp. High Pressures 10, 493 (1978).Google Scholar
14. McCluskey, M.D., Hsu, L., Wang, L., and Haller, E.E., Phys. Rev. B 54, 8962 (1996).Google Scholar
15. Haller, E. E., “Hydrogen in Crystalline Semiconductors,” Semicond. Sci. Technol. 6, 73 (1991).Google Scholar
16. Haller, E. E., in Handbook on Semiconductors. 2nd ed., Vol. 3b, edited by Mahajan, S. (Elsevier North-Holland Inc., New York 1993), p. 1515–55.Google Scholar
17. Pajot, B., Newman, R.C., Murray, R., Jalil, A., Chevallier, J., and Azoulay, R., Phys. Rev. B 37, 4188 (1988).Google Scholar
18. McCluskey, M.D., Haller, E.E., Walker, J., Johnson, N.M., Vetterhöffer, J., Weber, J., Joyce, T.B., and Newman, R.C., Phys. Rev. B 56, 6404 (1997).Google Scholar
19. Davidson, B.R., Newman, R.C., Bullough, T.J., and Joyce, T.B., Phys. Rev. B 48, 17106 (1993).Google Scholar
20. Vetterhöffer, J., Svensson, J.H., Weber, J., Leitch, A.W.R., and Botha, J.R., Phys. Rev. B 50, 2708 (1994).Google Scholar
21. McCluskey, M.D., Haller, E.E., Walukiewicz, W., and Becla, P., Phys. Rev. B 53, 16297 (1996).Google Scholar
22. McCluskey, M.D., Haller, E.E., Walukiewicz, W., and Becla, P., accepted for publication in Solid State Commun.Google Scholar
23. Giannozzi, P., de Gironcoli, S., Pavone, P., and Baroni, S., Phys. Rev. B 43, 7231 (1991).Google Scholar
24. Ves, S., Strössner, K., and Cardona, M., Solid State Commua 57, 483 (1986).Google Scholar
25. Pajot, B., in Semiconductors and Semimetals. edited by Shimura, F., Vol. 42 (Academic Press, 1994), Ch. 6.Google Scholar
26. Artacho, Emilio, Induráin, Félix, Pajot, Bernard, Ramirez, Rafael, Herrero, Carlos P., Khirunenko, Ludmila I., Itoh, Kohei M. and Haller, Eugene E., Phys. Rev. B 56, 3820 (1997).Google Scholar
27. Jastrzebski, L., Zanzucchi, P., Thebault, D., and Lagowski, J., J. Electrochem. Soc. 129, 1638 (1982).Google Scholar
28. Pajot, B., Stein, H.J., Cales, B., and Naud, C., J. Electrochem. Soc. 132, 3034 (1985).Google Scholar
29. Hrostowski, H.J. and Kaiser, R.H., Phys. Rev. 10, 966 (1957).Google Scholar
30. Herzberg, G., Infrared and Raman Spectra of Diatomic Molecules (D. Van Nostrand Company, 1945), 104.Google Scholar
31. Bosomworth, D.R., Hayes, W., Spray, A.R.L., and Watkins, G.D., Proc. Roy. Soc. A 317, 133 (1970).Google Scholar
32. Yamada-Kaneta, H., Kaneta, C., and Ogawa, T., Phys. Rev. B 42, 9650 (1990).Google Scholar
33. Gienger, M., Glaser, M., and Laβmann, K., Solid State Commua 86, 285 (1993).Google Scholar
34. Mayur, A.J., Sciacca, M.D., Udo, M.K., Ramdas, A.K., Itoh, K., Wolk, J., and Haller, E.E., Phys. Rev. B 49, 16293 (1994).Google Scholar
35. McCluskey, M.D. and Haller, E.E., Phys. Rev. B 56, 9520.Google Scholar
36. Wetzel, C., Walukiewicz, W., Haller, E.E., Ager, J. III, Grzegory, I., Porowski, S., and Suski, T., Phys. Rev. B 53, 1322 (1996).Google Scholar