Skip to main content Accessibility help

Infrared behavior of aluminum nanostructure sculptured thin films

  • Tino Hofmann (a1), M. Schubert (a2), D. Schmidt (a3) and E. Schubert (a4)


We report on fabrication, structural and infrared optical characterization of nanostructure aluminum sculptured thin films prepared by glancing angle deposition (GLAD) and controlled substrate motion on p-type silicon. We discuss two structures, one with plate-like and one with screw-like (chiral) morphology. While the plate-like sample possesses a metal Drude behavior in the infrared spectral range, the chiral nanowire sample behaves non-metallic and reveals a series of intriguing resonances, which are equally spaced in frequency by ∼7.5 THz. We suggest that formation of 3D nano resonator circuits consisting of inductances and capacitances has occurred within the screw-like conductive aluminum wire sample, which might be responsible for the observed resonances. We suggest conductive GLAD nanostructures in combination with Schottky diodes to facilitate active or passive THz detector and transmitter devices.



Hide All
[1] Lakthakia, A. and Messier, R., Sculptured Thin Films (SPIE Press, Bellingham, 2004).
[2] Schubert, E., Fahlteich, J., Th. Höche, Wagner, G., and Rauschenbach, B., Nucl. Instrum. Meth. B 244, 40 (2006).
[3] Robbie, K., Brett, M. J., and Lakhtakia, A., J. Vac. Sci. Technol. A 13, 2991 (1995).
[4] Schubert, E.. Höche, Th., Frost, F., and Rauschenbach, B., Appl. Phys. A 81, 481 (2005).
[5] Karabacak, T., Wang, G.-C., and Lu, T.-M., J. Appl. Phys. 94, 7723 (2003).
[6] Smy, T., Dew, S. K., and Joshi, R. V., J. Vac. Sci. Technol. A 19, 251 (2001).
[7] Karabacak, T., Singh, J. P., Zhao, Y.-P., Wang, G.-C., and Lu, T.-M., Phys. Rev. B 68, 125408 (2003).
[8] Toader, O. and John, S., Phys. Rev. E 66, 016610 (2002).
[9] Singh, J. P., Liu, D. L., Ye, D. X., Picu, R. C., Lu, T. M., and Wang, G. C., Appl. Phys. Lett. 84, 3657 (2004).
[10] Umlor, M. T., Appl. Phys. Lett. 87, 082505 (2005).
[11] Bell, D. J., Dong, J., Sun, Y., Zhang, L., Nelson, B. J., and Grützmacher, D., Proc. IEEE Conference of Nanotechnology, Nagoya, Japan (2005).
[12] Kesapragada, S. V., Victor, P., Nalamasu, O., and Gall, D., Nano Lett. 6, 854 (2006).
[13] Harris, K. D., Huzingia, A., and Brett, M.J., Electrochem. Solid State Lett. 8, A525 (2005).
[14] Ye, D.-X., Zhou, Y.-P., Yang, G.-R., Zhao, Y.-G., Wang, G.-C., and Lu, T.-M., Nanotechnology 13, 615 (2002).
[15] Dick, B., Brett, M.J., and Smy, T., J. Vac. Sci.Techn. B 21, 2560 (2003).
[16] Suzuki, M., Nagai, K., Kinoshita, S., Kimura, K., Okano, T., and Sasakawa, K., Appl. Phys. Lett. 89, 133101 (2006).
[17] Chen, H. T., Padilla, W. J., Zide, J. M. O., Gossard, A. C., Taylor, A. J., and Averitt, R. D., Nature 444, 597 (2006).
[18] Mittleman, D., Nature 444, 560 (2006).
[19] Franke, E., Trimble, C. L., DeVries, M. J., Woollam, J.A., Schubert, M., and Frost, F., J. Appl. Phys. 88, 5166 (2000).
[20] Gelmont, B.L., Woolard, D.L., Crowe, T.W., Mattauch, R.J., Phys. Rev. B 61, 15939 (2000).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed