Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T10:00:25.052Z Has data issue: false hasContentIssue false

INFLUENCE OF THE PREPARATION ROUTE ON THE STRUCTURAL, MORPHOLOGICAL AND SPECTROSCOPIC PROPERTIES OF SrTiO3 AND SrTiO3:Eu3+ POWDERS.

Published online by Cambridge University Press:  23 January 2013

Gisele Gasparotto
Affiliation:
São Paulo State University, Chemistry Institute - UNESP, Araraquara, Brasil Rua Professor Francisco Degni -55- C. Postal 355, 14800-060- Araraquara, SP, Brasil
Guilhermina F. Teixeira
Affiliation:
São Paulo State University, Chemistry Institute - UNESP, Araraquara, Brasil Rua Professor Francisco Degni -55- C. Postal 355, 14800-060- Araraquara, SP, Brasil
Marco A. Cebim
Affiliation:
São Paulo State University, Chemistry Institute - UNESP, Araraquara, Brasil Rua Professor Francisco Degni -55- C. Postal 355, 14800-060- Araraquara, SP, Brasil
José A. Varela
Affiliation:
São Paulo State University, Chemistry Institute - UNESP, Araraquara, Brasil Rua Professor Francisco Degni -55- C. Postal 355, 14800-060- Araraquara, SP, Brasil
Leinig A. Perazolli
Affiliation:
São Paulo State University, Chemistry Institute - UNESP, Araraquara, Brasil Rua Professor Francisco Degni -55- C. Postal 355, 14800-060- Araraquara, SP, Brasil
Maria A. Zaghete
Affiliation:
São Paulo State University, Chemistry Institute - UNESP, Araraquara, Brasil Rua Professor Francisco Degni -55- C. Postal 355, 14800-060- Araraquara, SP, Brasil
Get access

Abstract

This research shows the influence of the synthesis route in the structural and morphological characteristics as well as in the luminescent properties of doped with europium and pure SrTiO3 (STO) powders prepared by microwave assisted hydrothermal synthesis, MWH, and by the polymeric precursor method, PPM. The XRD at room temperature of the STO powders nominally pure obtained by PPM at 700°C for 3 hours, as well as by the MWH at 190°C by 30 minutes present all the reflection peaks for the cubic perovskite structure (JCPDS-ICDD 35-734). The morphology varies according to the synthesis route. The particles of pure STO obtained by PPM presents morphology in the form of plates and the morphology of the particles synthesized by MWH is spherical with approximately 150 nm. The photoluminescent analysis shows for pure STO wide bands associated with the transition of charge transfer from the titanates group (TiO3)2- that are centered on 450 nm. In both preparation methods the emission bands obtained in the composites spectra were found to be asymmetric and low intense. However, in the case of the STO prepared by the PPM a bigger FWHM of the band can be observed. The excitation of the samples was done using a laser (Coherent Innova) with wavelength of 350 nm.

Type
Articles
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, Z., Kugler, V., Helmersson, U., Konofaos, N., Evangelou, E. K., Nakao, S., and Jin, P., Appl. Phys. Lett. 79, 1513 (2001).CrossRefGoogle Scholar
Shin, D. S., Park, S. T., Choi, H. S., Choi, I. H., and Lee, J. Y., Thin Solid Films 354, 251 (1999).CrossRefGoogle Scholar
Hara, T., Ishiguro, T., Sens. Actuators B 136, 489 (2009).CrossRefGoogle Scholar
Burnside, S., Moser, J.E., Brooks, K., Gratzel, M., Cahen, D. J., Phys. Chem. B 103 9328 (1999).CrossRefGoogle Scholar
Domen, K., Kudo, A., Onishi, T., Kosugi, N., Kuroda, H., Phys, J.. Chem. 90, 292 (1986).Google Scholar
Cardona, M., Phys. Rev. 140, 651 (1965).CrossRefGoogle Scholar
Takashima, H., Shimada, K., Miura, N., Katumata, T., Inaguma, Y., Ueda, K., Itoh, M., Adv. Mater. 21, 1 (2009).CrossRefGoogle Scholar
Rho, J.H., Jang, S.H., Ko, Y.D., Kang, S.J., Kim, D.-W., Chung, J.-S., Kim, M., Han, M., Choi, E., Appl. Phys. Lett. 95, 241906 (2009).CrossRefGoogle Scholar
Lima, R.C., Paris, E.C.,, Leite, E.R., Espinosa, J.W.M., Souza, A.G., Longo, E., J.Chem. Education 84, 814 (2007).Google Scholar
Jia, C.L., Thust, A., and Urban, K., Phys. Rev. Lett. 95, 225506 (2005).CrossRefGoogle Scholar
Jiang, C., Fang, L., Shen, M., Zheng, F., and Wu, X., Appl. Phys. Lett. 94, 07110, (2009).Google Scholar
Simões, A.Z., González, A.H.M, Riccardi, C. S., Cantoni, M., Zaghete, M.A., Stojanovic, B. D., Varela, J. A. J. Eur. Ceram. Soc. 24, 1607 (2004).CrossRefGoogle Scholar
Pechini, M. P., U.S. Patent 3,330 (1967) 69.Google Scholar
Moon, J., Kerchner, J. A., Krarup, H. G., Adair, J. H.. J. Mater. Research 14, 425 (1999).CrossRefGoogle Scholar
Peterson, C. R., Slamovich, E. B., J. Am. Ceram. Soc. 82, 1702 (1999).CrossRefGoogle Scholar
Mazzo, T. M., Moreira, M. L., Pinatti, I. M., Picon, F. C., Leite, E. R., Rosa, I. L.V., Varela, J.A., Perazolli, L. A., Longo, E., Optical Materials 32, 990 (2010).CrossRefGoogle Scholar
Gasparotto, G., Lima, S.A.M., Davolos, M.R., Varela, J.A., Longo, E., Zaghete, M.A., Lumin, J.. 128, 1606 (2008).Google Scholar