Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T08:48:35.416Z Has data issue: false hasContentIssue false

The Influence of Substrate Doping on Silicide Formation with Tungsten Deposited From Tungsten Hexafluoride

Published online by Cambridge University Press:  25 February 2011

S. -L. Zhang
Affiliation:
Swedish Institute of Microelectronics, P.O. Box 1084, S-164 21, Kista
M. ÖStling
Affiliation:
Royal Institute of Technology-Electrum, Solid State Electronics, P.O. Box 1298, S-164 28, Kista
R. Buchta
Affiliation:
Swedish Institute of Microelectronics, P.O. Box 1084, S-164 21, Kista
U. Smith
Affiliation:
Ericsson Components AB, S-164 81 Kista, Sweden
J. Linnros
Affiliation:
Swedish Institute of Microelectronics, P.O. Box 1084, S-164 21, Kista
S. -F. Gong
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S-581 83 Linköping, Sweden
Get access

Extract

The influence of substrate doping on the WSiz formation is investigated. Ion implantation was used to dope Si wafers with either B, Al, P, As or Sb. Implanted doses were in the range from 1 × 1013 to 5 × 1016at./cm2. Dopant activation was always performed before tungsten deposition in a hot wall LPCVD system. The sillcidation was monitored by means of Rutherford backscattering spectrometry (RBS), and the dopant redistribution was analyzed by secondary ion mass spectroscopy (SIMS). The suicide formation on p-type substrates was retarded at high doping levels, whereas that on the n-type substrates showed a more complex behavior. In the latter cases, the silicidation could be either retarded or unaffected, depending on the dopant concentration. Sb doped wafers exhibited a slightly increased silicidation rate with doping level, while P and As doped wafers showed a peak, reaction rate for intermediate doping levels. SIMS analysis revealed a segregation of B and P into the suicide during formation, while Al, As and Sb were snowplowed and accumulated at the WSi2/Si interface. Binary and ternary compounds of Al, P and As with W and Si were found by X-ray diffraction for the highest doping levels.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Zhang, S. -L, Buchta, R., and Östling, M., J. Mater. Res. 6, 1886 (1991).Google Scholar
2 Zhang, S. -L, Smith, U., Buchta, R., and östling, M., J. Appl. Phys. 69, 213 (1991).Google Scholar
3 Locker, L. D. and Capio, C. D., J. Appl. Phys. 44, 4366 (1973).Google Scholar
4 Silversmith, D. J., Rathman, D. D. and Mountain, R. W., This Solid Films 93, 413 (1982).Google Scholar
5 Bomchil, G., Goeltz, G. and Torres, J., Thin Solid Films 140, 59 (1986).Google Scholar
6 Lee, H. S. and Wolga, G. J., J. Electrochem. Soc. 137. 2618 (1990).Google Scholar
7 Blewer, R. S. and Tracy, M. E., in Proceedings of the 1985 Workshop on Tungsten and Other Refractory Metals for VLSI Applications, Ed. Blewer, R. S., pp. 5362, MRS, Pittsburgh, PA (1986).Google Scholar
8 Kamins, T. I., Laderman, S. S., Coulman, D. J., and Turner, J. E., J. Electrochem. Soc. 133, 1438 (1986).CrossRefGoogle Scholar
9 Torres, J., Pelissier, A., Prio, A., Oberlin, J. C. and Bomchil, G., Le Vide, Les couches minces, No.236, 91 (1987).Google Scholar
10 Torres, J., Oberlin, J. C., Bomchil, G., Perio, A., Levy, D., Saulnier, A., Ponpon, J. P., and Stuck, R., in Proceedings of 17th European Solid State Device Research Conference, Bologna, Italy, Sept. 14–17, 1987, p. 197.Google Scholar
11 Torres, J., Thomas, O., Jourdain, D., Madar, R., Perio, A., and Senateur, J. P., J. Appl. Phys. 63, 732 (1988).Google Scholar
12 Torres, J., Oberlin, J. C., Stuck, R., Bourhila, N., Palleau, J., Goeltz, G., and Bomchil, G., Appl. Sur. Sci. 38, 186 (1989).Google Scholar
13 Probst, V., Schaber, H., Mitwalsky, A., Kabza, H., Van den hove, L., and Maex, K., J. Appl. Phys. 70, 708 (1991).Google Scholar
14. Maex, K., De Keersmaeker, R. F., Ghosh, G., Delaey, L., and Probst, V., J. Appl. Phys. 66, 5327 (1989).CrossRefGoogle Scholar
15 Standard JCPDS diffraction pattern 10–242 {hexagonal W(Si,Al)2}Google Scholar
16 Villars, P. and Calvent, L. D. eds., Pearson's Handbook of Crvstallographic Data for Intermetallic Phases, Vol. 3 (American Society for Metals, 1985), p. 1068.Google Scholar
17 Standard JCPDS diffraction pattern 18–1415 {Monoclinic W2As3}.Google Scholar
18 Standard JCPDS diffraction pattern 18–1414 {Monoclinic WAs2}Google Scholar
19 Standard JCPDS diffraction pattern 35–1467 {a-WP2}.Google Scholar
20 Villars, P. and Calvent, L. D. eds., Pearson's Handbook of Crvstallographic Data for Intermetallic Phases, Vols. 1–3 (American Society for Metals, 1985).Google Scholar
21 Pan, P. -H., Hsieh, N., Geipel, H. J. Jr, and Slusser, G. J., J. Appl. Phys. 53. 3059 (1982).CrossRefGoogle Scholar
22 Jahnel, F., Biersack, J., Crowder, B. L., d'Heurle, F. M., Fink, D., Isaac, R. D., Lucchese, C. J., and Petersson, C. S., J. Appl. Phys. 53, 7372 (1982).Google Scholar
23 Baglin, J., Dempsey, J., Hammer, W., d'Heurle, F., Petersson, S., and Serrano, C., J. Electron. Mater. 8, 641 (1979).Google Scholar
24 Raider, S. I., Flitsch, R. and Palmer, M. J., J. Electrochem. Soc. 122, 413 (1975).CrossRefGoogle Scholar
25 Licciardello, A., Puglisi, O. and Pignataro, S., Appl. Phys. Lett. 48, 41 (1986).Google Scholar
26 Busta, H. H. and Tang, C. H., J. Electrochem. Soc. 133, 1195 (1986).Google Scholar
27 See, for example, Sze, S. M., Physics of Semiconductor Devices (A Wiley-International Publication, 2nd Edition, 1981).Google Scholar
28 See, for example, Fahey, P. M., Griffin, P. B. and Plummer, J. D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
29 Shockley, W. and Moll, J. L., Phys. Rev. 119, 1480 (1960).Google Scholar
30 Deal, B. E. and Grove, A. S., J. Appl. Phys. 36, 3770 (1965).Google Scholar
31 Fair, R. B., in Processing Technologies, ed. Kahng, D., Applied Solid State Science, Supplement 2B (Academic Press, New York, 1981), p. 6.Google Scholar