Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-06-30T08:46:21.801Z Has data issue: false hasContentIssue false

Influence of Spatial Correlations on Permeability and Connectivity of Sandstone

Published online by Cambridge University Press:  10 February 2011

Hernan A. Makse
Affiliation:
Center for Polymer Studies and Physics Dept., Boston University, Boston, MA 02215 USA
Shlomo Havlin
Affiliation:
Department of Physics, Bar-Ilan University, Ramat Gan, Israel
Peter R. King
Affiliation:
3BP Exploration Operating Company Ltd., Sunbury-on-Thames, Middx., TW16 7LN, UK
H. Eugene Stanley
Affiliation:
Center for Polymer Studies and Physics Dept., Boston University, Boston, MA 02215 USA
Get access

Abstract

Sedimentary rocks have complicated permeability patterns arising from the geological processes that formed them. Here we address the longstanding question of how such patterns are generated. We also analize data on two sandstone samples from different geological environments, and find that the permeability fluctuations display long-range power-law correlations characterized by an exponent H. For both samples, we find H ≈ 0.82 – 0.90. These permeability fluctuations significantly affect the flow of fluids through the rocks.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bagnold, R. A. The physics of blown sand and desert dunes (Chapman and Hall, London 1941).Google Scholar
[2] McKee, E. D., Crosby, E. J. & Berryhill, H. L. Jr. Journal of Sedimentary Petrology 37, 829851 (1967).Google Scholar
[3] Jopling, A. V. & Walker, R. G. Journal of Sedimentary Petrology 38, 971984 (1968).Google Scholar
[4] Borges, J. L. The book of sand (Emecé, Buenos Aires 1975).Google Scholar
[5] Fryberger, S. G. & Schenk, C. Sedimentology 28, 805821 (1981).Google Scholar
[6] Cheel, R. J. & Middleton, G. V. Journal of Geology 94, 489504 (1986).Google Scholar
[7] Makse, H. A., Havlin, S., King, P. R., and Stanley, H. E. (submitted).Google Scholar
[8] Hele-Shaw, H. S. Nature 58, 3436 (1898).Google Scholar
[9] Bagnold, R. A. Proc. Roy. Soc. London A295, 219232 (1966).Google Scholar
[10] Allen, J. R. L. Journal of Geology 78, 326351 (1970).Google Scholar
[11] Jaeger, H. M. & Nagel, S. R. Science 255, 15231531 (1992).Google Scholar
[12] Makse, H. A., Davies, G., Havlin, S., Ivanov, P. Ch., King, P. R., and Stanley, H. E. (submitted).Google Scholar
[13] Bunde, A., Havlin, S., eds., Fractals in Science (Springer-Verlag, Berlin 1994).Google Scholar
[14] Coniglio, A., Nappi, C., Russo, L., and Peruggi, F., J. Phys. A10, 205209 (1977).Google Scholar
[15] Weinrib, A., Phys. Rev. B 29, 387395 (1984).Google Scholar
[16] Prakash, S., Havlin, S., Schwartz, M., Stanley, H. E., Phys. Rev E 46, R1724 (1992).Google Scholar
[17] Makse, H. A., Havlin, S., Stanley, H. E., and Schwartz, M., 1993 Int. Conf. Complex Systems in Computational Physics, Buenos Aires, Chaos, Solitons and Fractals 6, 295 (1995).Google Scholar