Skip to main content Accessibility help
×
Home

Influence of Self-Assembled Organic Thin Film Monolayer on Ambient Copper Surfaces Oxidation

  • Ilia Platzman (a1), Hossam Haick (a2) and Rina Tannenbaum (a3)

Abstract

Qualitative and quantitative studies of the oxidation of molecularly modified polycrystalline copper (Cu) thin films upon exposure to ambient air conditions for long periods (on the order of several months) are reported in this work. Thin films of Cu, prepared by thermal evaporation, were analyzed by means of x-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) to gain an understanding on the growth mechanism of oxide on bare and molecularly modified Cu surfaces. The results from all techniques points for an unstable behavior of bare Cu surfaces characterized in very fast and continuous growth of Cu oxide layers during first 60 days of exposure to overall 6 nm oxide thickness. However, Cu films prepared under the same conditions, but covered with a self-assembled organic thin film layer of 1,4-phenylene diisocyanide (PDI) molecules adsorbed from solution, showed a decrease in the thickness of the copper oxide layer on the Cu surface. Our findings imply that chemisorbed PDI monolayers can serve as protective coatings for Cu.

Copyright

References

Hide All
1 Whelan, C.; Kinsella, M.; Carbonell, L.; Ho, H.; Maex, K. Microelectron. Eng. 2003, 70, 551.10.1016/S0167-9317(03)00283-1
2 Iguchi, K.; Tachibana, A. Appl. Surf. Sci. 2000, 159, 167.10.1016/S0169-4332(00)00111-2
3 Ho, P.; Kwok, T. Rep. Prog. Phys. 1989, 52, 301.10.1088/0034-4885/52/3/002
4 Suzuki, S.; Ihikawa, Y.; Isshiki, M.; Waseda, Y. Mater. Trans. JIM. 1997, 38, 1004.10.2320/matertrans1989.38.1004
5 Chawla, S.; Ricket, B.; Sankarrama, N.; Payer, J. Corr. Sci. 1992, 3, 1617.10.1016/0010-938X(92)90038-5
6 Iijima, J.; Lim, J.; Hong, S.; Suzuki, S.; Mimura, K.; Isshiki, M. Appl. Surf. Sci. 2006, 253, 2825.10.1016/j.apsusc.2006.05.063
7 Cano, E.; Torres, C.; Bastidas, J. Mater. and Corr. 2001, 5, 667.10.1002/1521-4176(200109)52:9<667::AID-MACO667>3.0.CO;2-H
8 Serine, N.; Serin, T.; Karadeniz, S. Semicond. Sci. Technol. 2002, 17, 60.10.1088/0268-1242/17/1/310
9 Cho, J.; Paik, K.; Kim, Y. IEEE Trans. Compon. Packag. Manuf. Technol. 1997, B20, 167.
10 Griffin, A.; Hernàndez, S.; Brotzen, F.; Dunn, C. J. Electrochem. Soc. 1994, 141, 807.10.1149/1.2054815
11 Chuang, C.; Aoh, J.; Din, R. Microelectr. Reliabil. 2006, 46, 449.10.1016/j.microrel.2005.01.010
12 Cabrera, N.; Mott, N. Rep. Prog. Phys. 1948-1949, 12, 163.10.1088/0034-4885/12/1/308
13 Mott, N. Trans. Farad. Soc. 1939, 35, 1175.10.1039/tf9393501175
14 Platzman, I.; Brener, R.; Haick, H.; Tannenbaum, R. J. Phys. Chem. C. 2008, 112(4), 1101.
15 Stewart, K.; Zhang, J.; Li, S.; Carter, W.; Gewirth, A. J. Elecrochem. Soc. 2007, 154, D57.10.1149/1.2393013
16 Cohen, S.; Brusic, V.; Kaufman, G.; Frankel, G.; Motakef, S.; Rush, B. J. Vac. Sci. Technol. A. 1990, 8(3), 2417.10.1116/1.576708
17 Zachary, D.; Schultz, M.; White, J.; Gewirth, A. Anal. Chem. 2004, 76, 604.
18 Feng, Y.; Teo, W.; Siow, K.; Gao, Z.; Tan, K.; Hsieh, A. J. Electrochem. Soc. 1997, 144(1), 55.10.1149/1.1837365
19 Jennings, G.; Munro, J.; Laibinis, P. Adv. Mater. 1999, 11, 1000.
20 Sinapi, F.; Lejeune, I.; Delhalle, J.; Mekhalif, Z. Electroch. Acta, 2007, 52, 5182.10.1016/j.electacta.2006.12.087
21 Hutt, D.; Liu, C. Appl. Surf. Sci. 2005, 252, 400.10.1016/j.apsusc.2005.01.019
22 Pranger, L.; Tannenbaum, R.; J. Coll. Inter. Sci. 2005, 292, 71.10.1016/j.jcis.2005.05.044
23 Pranger, L.; Goldstein, A.; Tannenbaum, R. Langmuir, 2005, 21, 5396.
24 Heiser, T.; Mesli, A. Appl. Phys. A. 1993, 57, 325.10.1007/BF00332285
25 Yamamoto, Y. Coord. Chem. Rev. 1980, 32, 193.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed