Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-26T22:59:01.528Z Has data issue: false hasContentIssue false

Influence of Precursor Chemistry on Synthesis of Silicon-Carbon-Germanium Alloys

Published online by Cambridge University Press:  15 February 2011

Michael Todd
Affiliation:
Department of Chemistry and Biochemistry Arizona State University, Tempe, Arizona 85287–1604
John Kouvetakis
Affiliation:
Department of Chemistry and Biochemistry Arizona State University, Tempe, Arizona 85287–1604
Phillip Matsunaga
Affiliation:
Department of Chemistry and Biochemistry Arizona State University, Tempe, Arizona 85287–1604
D. Chandrasekhar
Affiliation:
Center for Solid State Science, Arizona State University, Tempe Arizona 85287–1704
David Smith
Affiliation:
Center for Solid State Science, Arizona State University, Tempe Arizona 85287–1704
Get access

Abstract

We describe the synthesis and use of the novel molecular precursors C (SiH3) 4, CH3GeH3and SiH3GeH3 to generate silicon-carbon-germanium materials by ultrahigh vacuum chemical vapor deposition. By using these precursors in reactions with S1H4 and GeH4 between 470°C and 650°C we obtained: 1) heteroepitaxial Si1-x-y. GexCy (y=0.04–0.06) alloys with C (SiH3) 4; (2) polycrystalline alloys with carbon compositions ranging from 2–14 at.% with CH3GeH3; (3) mixtures of diamond cubic nanocrystals (Ge, Si1-xGex) and amorphous SiC with SiH3CH2GeH3. The effect of the precursor chemistry on composition, crystallinity, and microstructure of the materials as characterized by Rutherford backscattering spectroscopy (RBS), secondary ion mass spectrometry (SIMS) and transmission electron microscopy (TEM) is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. People, R. Bean, J. C., Lang, D. V., Sergent, A. M., Stromes, H. L., Wecht, K. W., Lynch, R. T. and Baldwin, K., Appl. Phys. Lett. 45 (11), 1231 (1984).Google Scholar
2. Patton, G. L., Harame, D. L., Strock, J. M., Mayerson, B. S., and Scilla, G. S., IEEE Electron Device Letters 10 (12) 534 (1989).Google Scholar
3. Patton, G. L. Comfort, J. H., Mayerson, B. S., Crabbe, E. F., Scilla, G. J., Strock, J. M. C., Sun, J. Y. C., Harame, D. L., and Burghartz, J. N., IEEE Electron Device Letters 11 (4), 171 (1990).Google Scholar
4. Mayerson, B. S., IBM J. Res. Develop. 34, 806, (1990);Google Scholar
Crabbé, E. F., Comfort, J. H., Lee, W., Gressler, J. D., Mayerson, B. S., Megdanis, A. C., Sun, J. Y. C., and Strock, J. M. C., IEEE Electron Device Letters 13 (5), 259 (1992).Google Scholar
5. Soref, R. A., J. Appl. Phys. 70 (4), 2470 (1991).Google Scholar
6. Iyer, S. S., Eberl, K., Goursky, M. S., LeGoues, F. K., and Tsang, J. C., Appl. Phys. Lett. 60 (3), 356 (1992).Google Scholar
7. Strane, J. W., Stein, H. J., Lee, S. R., Doyle, B. L., Picraux, S. T., and Mayer, J. W., Appl. Phys. Lett. 63 (20), 2786 (1993).Google Scholar
8. Eberl, K., Iyer, S. S., Zollner, S., Tsang, J. C., and Le Goues, F. K., Appl. Phys. Lett. 69 (24), 3033 (1992).Google Scholar
9. Atzmon, Z., Bair, A. E., Jaquez, E. J., Mayer, J. W., Chandrasekhar, D., Smith, D. J., Hervig, R. L., and Robinson, McD., Appl. Phys. Lett. 65 (20), 2559 (1994).Google Scholar
10. Kouvetakis, J., Todd, M., Chandrasekhar, D. and Smith, D. J., Appl. Phys. Lett. 65 (23), 2960 (1994).Google Scholar
Hager, U.R., Steigelman, O., Muller, G., Schmidbaur, H., Robertson, H. H., and Rankin, D. W., Angew. Chem. Int. Ed. 29 (2), 201, (1990)Google Scholar