Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T12:11:56.264Z Has data issue: false hasContentIssue false

Influence of Mis-Orientation of C-plane Sapphire Substrate on the Early Stages of MOCVD Growth of GaN Thin Films

Published online by Cambridge University Press:  01 February 2011

Seong-woo Kim
Affiliation:
Nippon Institute of Technology, 4–1 Gakuendai, Miyashiro, Saitama, 345–8501, Japan
Hideo Aida
Affiliation:
Namiki Precision Jewel Co., Ltd., 3–8–22 Shinden, Adachi-ku, Tokyo, 123–8511, Japan
Toshimasa Suzuki
Affiliation:
Nippon Institute of Technology, 4–1 Gakuendai, Miyashiro, Saitama, 345–8501, Japan
Get access

Abstract

We have studied the early stages of GaN growth to realize the growth mechanism of GaN thin films on mis-oriented sapphire substrates which affects the surface and crystal quality of GaN thin films. As the result, it was found that the larger mis-orientation angle helps the growth of the larger grain of GaN and leads to the earlier shift of growth mode from 3D to 2D. The AFM observation of closed-coalesced GaN thin films revealed the difference in the micro-step structures by the mis-orientation angle of sapphire substrate. The result of x-ray rocking curve as a function of mis-orientation angle well matched with the microstructure of GaN surface, indicating that the larger mis-orientation angle helps the column ordering of GaN crystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Iwasa, N. and Nagahama, S., Jpn. J. Appl. Phys. 34 L797 (1995).Google Scholar
2. Khan, M. A., Shur, M. S., Kuznia, J. N., Chin, Q., Burnì, J. W. and Schaff, W. J., Appl. Phys. Lett. 66 1083 (1995).Google Scholar
3. Yuasa, T., Ueta, Y., Tsuda, Y., Ogawa, A., Taneya, M. and Takao, K., Jpn. J. Appl. Phys. 38, L703 (1999).Google Scholar
4. Lu, D., Florescu, D. I., Lee, D. S., Merai, V., Parekh, A., Ramer, J. C., Guo, S. P., and Armour, E., phys. stat. sol. (a) 1(200). 71 (2003).Google Scholar
5. Gradowski, P. A., Holmes, A. L., Eiting, C. J., and Dupuis, R. D., Appi. Phys. Lett. 69, 3626 (1996).Google Scholar
6. Kim, S-W., Aida, H. and Suzuki, T., phys. stat. sol. (c) 1(10) 2483 (2004).Google Scholar
7. Kim, S-W., Aida, H. and Suzuki, T., Ext. Abst. of Int. Workshop on Nitride Semiconductors, Pittsburgh, 2004, pp. 112.Google Scholar
8. Kim, S-W., Yamada, T., Haga, K., Akatsu, M. and Suzuki, T., Proc. Int. Workshop on Nitride Semiconductors, IPAP. Conp. Ser. 1 pp. 247250 (2000).Google Scholar
9. Ng, T.–B., Han, J., Biefeld, R. M. and Weckwerth, M. V., J. Electron. Mater. 27, 190 (1998).Google Scholar
10. Haffouz, S., Beaumont, B., Vennegues, P. and Gibart, P., phys. stat. sol. (a), 176, 677 (1999).Google Scholar
11. Kim, D-J., Moon, Y-T., Ahn, K-S. and Park, S-J., J. Vac. Sci. Technol. B, 18(1), 140 (2000).Google Scholar