Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T22:54:48.430Z Has data issue: false hasContentIssue false

Influence of Lithium Content on Performance of Layered Li1+z[Ni0.45Mn0.45Co0.1]1-zO2 in Lithium Ion Batteries

Published online by Cambridge University Press:  26 February 2011

Jie Xiao
Affiliation:
jxiao1@binghamton.edu, State University of New York at Binghamton, Chemistry, State Univerdity of New York at Binghamton, Binghamton, NY, 13902, United States, 607-777-4623, 607-777-4623
Natasha A. Chernova
Affiliation:
nchernova@gmail.com, State University of New York at Binghamton, Department of Chemistry, Binghamton, NY, 13902, United States
M. Stanley Whittingham
Affiliation:
stanwhit@binghamton.edu, State University of New York at Binghamton, Department of Chemistry, Binghamton, NY, 13902, United States
Get access

Abstract

Li1+z[Ni0.45Mn0.45Co0.1]1-zO2(0.8≤1+z≤1.2) has been synthesized by the co-precipitation method. It was found that 5% excess lithium must be added to obtain the desired composition. XRD results show that an apparent single-phase structure appears except for the lowest lithium content. The layered character of the structure increases with increasing lithium content and Rietveld refinement reveals that cation disorder decreases rapidly as more lithium is added. This conclusion is further confirmed by magnetic studies in which only Li0.8[Ni0.45Mn0.45Co0.1]1.2O2 and Li0.9(Ni0.45Mn0.45Co0.1)1.1O2 show magnetization hysteresis loops. The electrochemical behavior of this series of samples is compared to figure out the best lithium to transition metal ratio.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chebaim, R. V., Prado, F., andManthiram, A., Chem. Mater.,13, 2952 (2001).Google Scholar
2. Venkatraman, S., Shin, Y., andManthiram, A., Electrochem. Solid-State Lett., 6, A9 (2003).Google Scholar
3. Whittingham, M. S., Chem. Rev. 104, 4271 (2004).Google Scholar
4. Thackery, M. M., Johnson, C. S., Vaughey, J. T., Li, N. andHackney, S. A., J. Mater. Chem., 15, 2257 (2005).Google Scholar
5. Yoshio, M., Noguchi, H., Itoh, J.-I, Okada, M., andMouri., T., J. Power Sources, 90, 176 (2000).Google Scholar
6. Ngala, J. K., Chernova, N. A., Ma, M., Mamak, M., Zavalij, P. Y., andWhittingham, M. S., J. Mater. Chem. 14, 214 (2004).Google Scholar
7. Koyama, Y., Yabuuchi, N., Tanaka, I., Adachi, H., andOhzuku, T., J. Electrochem. Soc., 151, A1545 (2004).Google Scholar
8. Koyama, Y., Makimura, Y., Tanaka, I., Adachi, H., andOhzuku, T., J. Electrochem. Soc., 151, A1499 (2004).Google Scholar
9. Yabuuchi, N., Koyama, Y., Nakayama, N., andOhzuku, T., J. Electrochem. Soc., 152, A1434 (2005).Google Scholar
10. MacNeil, D. D., Lu, Z., andDahn, J. R., J. Electrochem. Soc., 149, A1332 (2002).Google Scholar
11. Lu, Z., MacNeil, D. D., andDahn, J. R., Electrochem. Solid-State Lett., 4, A200 (2001).Google Scholar
12. Choi, J. andManthiram, A., J. Electrochem. Soc., 152, A1714 (2005).Google Scholar
13. Patoux, S. andDoeff, M., Electrochem. Commun., 6, 767 (2004).Google Scholar
14. Park, S. H., Shin, H. S., Myung, S. T., Yoon, C. S., Amine, K., andSun, Y.J., Chem. Mater., 17, 6 (2005).Google Scholar
15. Chen, Z., Sun, Y.-K., andAmine, K., J. Electrochemical Soc., 153, A1818 (2006).Google Scholar
16. Todorov, Y. M., andNumata, K., Electrochimica Acta, 50, 495 (2004).Google Scholar
17. Xiao, J., Chernova, N., andWhittingham, M. S., Chem. Mater., to be published.Google Scholar
18. Whittingham, M. S. andGamble, F. R., Mater. Res. Bull., 10, 363(1975).Google Scholar