Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T00:52:00.868Z Has data issue: false hasContentIssue false

The Influence of Hydrogen Dilution and Substrate Temperature in Hot-Wire Deposition of Amorphous and Microcrystalline Silicon With Filament Temperatures Between 1900 And 2500 °C

Published online by Cambridge University Press:  10 February 2011

J. P. Conde
Affiliation:
IST, Instituto Superior Técnico, Department of Physics, Av. Rovisco Pais, 1096 Lisboa Codex, Portugal, fconde@alfa.ist.utl.pt
P. Brogueira
Affiliation:
IST, Instituto Superior Técnico, Department of Physics, Av. Rovisco Pais, 1096 Lisboa Codex, Portugal, fconde@alfa.ist.utl.pt
R. Castanha
Affiliation:
INESC, Instituto de Engenharia de Sistemas e Computadores, Rua Alves Redol 9, 1000 Lisboa, Portugal
V. Chu
Affiliation:
INESC, Instituto de Engenharia de Sistemas e Computadores, Rua Alves Redol 9, 1000 Lisboa, Portugal
Get access

Abstract

The effect of hydrogen dilution and substrate temperature on the optoelectronic and structural properties of thin films deposited by hot-wire chemical vapor deposition with filament temperatures between 1900 and 2500 °C from silane and hydrogen are studied. Amorphous silicon films are obtained at high deposition rates for hydrogen dilutions below 90%. The deposition rate scales approximately linearly with the filament temperature in this regime. Microcrystalline films are obtained for hydrogen dilution above 90%, independently of the filament temperature and substrate temperature, with much lower growth rates. The Raman spectrum of these films shows high crystalline fraction and small grain size. High conductivity films, typical of microcrystalline silicon, with high growth rates were achieved by either increasing the substrate temperature at low hydrogen dilution, or by using a hydrogen dilution just at the amorphous to microcrystalline transition point.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wiesmann, H., Ghosh, A.K., McMahon, T., and Strongin, M., J. Appl. Phys. 50, 3752 (1979).Google Scholar
2. Matsumura, H., Jpn. J. Appl. Phys. 25, L949 (1986); J. Appl. Phys. 65, 4396 (1989): Jpn. I. Appl. Phys. 30, L1522 (1991).Google Scholar
3. Doyle, J., Robertson, R., Lin, G.H., He, M.Z., and Gallagher, A., J. Appl. Phys. 64, 3215 (1988).Google Scholar
4. Mahan, A.H., Carapella, J., Nelson, B.P., Crandall, R.S., and Balberg, I., J. Appl. Phys. 69, 6728 (1991).Google Scholar
5. Zedlitz, R., Kessler, F., and Heintze, M., J. Non-Cryst. Solids 164–166, 83 (1993).Google Scholar
6. Cifre, J., Bertomeu, J., Puigdollers, J., Polo, M.C., Andreu, J., Lloret, A., Appl. Phys. A 59, 645 (1994).Google Scholar
7. Middya, A.R., Lloret, A., Perrin, J., Huc, J., Moncel, J.L., Parey, J.Y., and Rose, G., Mat. Res. Soc. Symp. Proc. 377, 119 (1995).Google Scholar
8. Mahan, A.H., Vanacek, M., AIP Conf. Proc. 234, 195 (1991).Google Scholar
9. Brogueira, P., Conde, J.P., Arekat, S. and Chu, V., J. Appl. Phys 78, 3776 (1995); J. Appl. Phys., June 1996 (to be published).Google Scholar
10. Kaneko, T., Wakagi, M., Onisawa, K., and Minemura, T., Appl. Phys. Lett. 64, 1865 (1994).Google Scholar
11. Yin, He, C., Cheng, G., Wang, L., Liu, X., and Hu, G.Y., J. Appl. Phys. 75, 797 (1994).Google Scholar
12. Tsai, C.C., in Amorphous Silicon and Related Materials edited by Fritzsche, H. (World Scientific, Singapore, 1988), p. 123.Google Scholar