Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T02:32:16.482Z Has data issue: false hasContentIssue false

Influence of Defects on Current Transport in GaN/InGaN Multiple Quantum Well Light-Emitting Diodes

Published online by Cambridge University Press:  01 February 2011

X. A. Cao
Affiliation:
Semiconductor Technology Laboratory, GE Research Center, One Research Circle, Niskayuna, NY 12309
E. B. Stokes
Affiliation:
Semiconductor Technology Laboratory, GE Research Center, One Research Circle, Niskayuna, NY 12309
S. F. LeBoeuf
Affiliation:
Semiconductor Technology Laboratory, GE Research Center, One Research Circle, Niskayuna, NY 12309
P. M. Sandvik
Affiliation:
Semiconductor Technology Laboratory, GE Research Center, One Research Circle, Niskayuna, NY 12309
J. Kretchmer
Affiliation:
Semiconductor Technology Laboratory, GE Research Center, One Research Circle, Niskayuna, NY 12309
D. Walker
Affiliation:
Semiconductor Technology Laboratory, GE Research Center, One Research Circle, Niskayuna, NY 12309
Get access

Abstract

We have studied the electrical and optical characteristics GaN/InGaN based light-emitting diodes (LEDs) grown on sapphire using metalorganic chemical vapor deposition (MOCVD). Strong correlation has been found between material quality and the mechanism of current transport through the wide-bandgap p-n junction. Tunneling behavior dominates throughout all injection regimes in the devices with high-density defects in the space-charge region, which act as deep-level carrier traps. The approximately current-squared dependence of light output at low currents indicates dominant nonradiative recombination in the active region. However, in a high quality LED diode, tunneling current is only a major contributor at low forward biases. At moderate biases, temperature dependent diffusion-recombination current has been identified as I0 exp(qV/1.6kT). In these devices, nonradiative recombination centers are saturated at current densities as low as 1.4×10-2 A/cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lester, S. D., Ponce, F. A., Craford, M. G. and Steigerwald, D. A., Appl. Phys. Lett. 66, 249 (1995)Google Scholar
2. Cassey, H. C. Jr, Muth, J., Krishnankutty, S. and Zavada, J. M., Appl. Phys. Lett. 68, 2867 (1996)Google Scholar
3. Perlin, P., Osinski, M., Eliseev, P. G., Smagley, V. A., Mu, J., Banas, M. and Sartori, P., Appl. Phys. Lett. 69, 1680 (1996)Google Scholar
4. Martil, I., Redondo, E. and Ojeda, A., J. Appl. Phys. 81, 2442 (1997)Google Scholar
5. Chitnis, A., Kurmar, A., Shatalov, M., Adivarahan, V., Lunev, A., Yang, J. W., Simin, G., Khan, M. A., Gaska, R. and Shur, M. S., Appl. Phys. Lett. 77, 3800 (2000)Google Scholar
6. Lillental-Weber, Z., Chen, Y., Ruvimov, S. and Washburn, J., Phys. Rev. Lett. 69, 2835 (1997)Google Scholar
7. Chen, Y., Takeucki, T., Amano, H., Akasaki, I., Yamada, N., Kaneko, Y. and Wang, S. Y., Appl. Phys. Lett. 72, 710 (1998)Google Scholar
8. Cherns, D., Henley, S. J. and Ponce, F. A., Appl. Phys. Lett. 78, 2691 (2001)Google Scholar
9. Hino, T., Tomiya, S., Miyajima, T., Yanashima, K., Hashimoto, S. and Ikeda, M., Appl. Phys. Lett. 76, 3421 (2000)Google Scholar
10. Elsner, J., Jones, R., Heggie, M. I., Sitch, P. K., Haugk, M., Frauenheim, T., Oberg, S. and Briddon, P. R., Phys. Rev. B. 58, 12571 (1998)Google Scholar
11. Riben, A. R. and Feucht, D. L., Solid-State Electron. 9, 1055 (1966)Google Scholar
12. Forrest, S. R., Didomernico, M. Jr, Smith, R. G. and Stocker, H. J., Appl. Phys. Lett. 36, 580 (1980)Google Scholar
13. Fedison, J. B., Chow, T. P., Lu, H. and Bhat, I. B., Appl. Phys. Lett. 72, 2841 (1998)Google Scholar
14. Dumin, D. J. and Pearson, G. L., J. Appl. Phys. 36, 3418 (1965)Google Scholar
15. Morgan, T. N., Phys. Rev. 148, 890 (1966)Google Scholar