Skip to main content Accessibility help
×
Home

Influence of Defects on Current Transport in GaN/InGaN Multiple Quantum Well Light-Emitting Diodes

  • X. A. Cao (a1), E. B. Stokes (a1), S. F. LeBoeuf (a1), P. M. Sandvik (a1), J. Kretchmer (a1) and D. Walker (a1)...

Abstract

We have studied the electrical and optical characteristics GaN/InGaN based light-emitting diodes (LEDs) grown on sapphire using metalorganic chemical vapor deposition (MOCVD). Strong correlation has been found between material quality and the mechanism of current transport through the wide-bandgap p-n junction. Tunneling behavior dominates throughout all injection regimes in the devices with high-density defects in the space-charge region, which act as deep-level carrier traps. The approximately current-squared dependence of light output at low currents indicates dominant nonradiative recombination in the active region. However, in a high quality LED diode, tunneling current is only a major contributor at low forward biases. At moderate biases, temperature dependent diffusion-recombination current has been identified as I0 exp(qV/1.6kT). In these devices, nonradiative recombination centers are saturated at current densities as low as 1.4×10-2 A/cm2.

Copyright

References

Hide All
1. Lester, S. D., Ponce, F. A., Craford, M. G. and Steigerwald, D. A., Appl. Phys. Lett. 66, 249 (1995)
2. Cassey, H. C. Jr, Muth, J., Krishnankutty, S. and Zavada, J. M., Appl. Phys. Lett. 68, 2867 (1996)
3. Perlin, P., Osinski, M., Eliseev, P. G., Smagley, V. A., Mu, J., Banas, M. and Sartori, P., Appl. Phys. Lett. 69, 1680 (1996)
4. Martil, I., Redondo, E. and Ojeda, A., J. Appl. Phys. 81, 2442 (1997)
5. Chitnis, A., Kurmar, A., Shatalov, M., Adivarahan, V., Lunev, A., Yang, J. W., Simin, G., Khan, M. A., Gaska, R. and Shur, M. S., Appl. Phys. Lett. 77, 3800 (2000)
6. Lillental-Weber, Z., Chen, Y., Ruvimov, S. and Washburn, J., Phys. Rev. Lett. 69, 2835 (1997)
7. Chen, Y., Takeucki, T., Amano, H., Akasaki, I., Yamada, N., Kaneko, Y. and Wang, S. Y., Appl. Phys. Lett. 72, 710 (1998)
8. Cherns, D., Henley, S. J. and Ponce, F. A., Appl. Phys. Lett. 78, 2691 (2001)
9. Hino, T., Tomiya, S., Miyajima, T., Yanashima, K., Hashimoto, S. and Ikeda, M., Appl. Phys. Lett. 76, 3421 (2000)
10. Elsner, J., Jones, R., Heggie, M. I., Sitch, P. K., Haugk, M., Frauenheim, T., Oberg, S. and Briddon, P. R., Phys. Rev. B. 58, 12571 (1998)
11. Riben, A. R. and Feucht, D. L., Solid-State Electron. 9, 1055 (1966)
12. Forrest, S. R., Didomernico, M. Jr, Smith, R. G. and Stocker, H. J., Appl. Phys. Lett. 36, 580 (1980)
13. Fedison, J. B., Chow, T. P., Lu, H. and Bhat, I. B., Appl. Phys. Lett. 72, 2841 (1998)
14. Dumin, D. J. and Pearson, G. L., J. Appl. Phys. 36, 3418 (1965)
15. Morgan, T. N., Phys. Rev. 148, 890 (1966)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed