Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-06-29T08:29:26.615Z Has data issue: false hasContentIssue false

Influence of Be Doping on Material Properties of Low-Temperature-Grown GaAs

Published online by Cambridge University Press:  01 February 2011

Saulius Marcinkevièius
Affiliation:
Department of Microelectronics and Information Technology, Royal Institute of Technology, Electrum 229, 16440 Kista, Sweden
Andreas Gaarder
Affiliation:
Department of Microelectronics and Information Technology, Royal Institute of Technology, Electrum 229, 16440 Kista, Sweden
Jörg Siegert
Affiliation:
Department of Microelectronics and Information Technology, Royal Institute of Technology, Electrum 229, 16440 Kista, Sweden
Jean-Fraņois Roux
Affiliation:
LAHC, University of Savoie, 73 376 Le Bourget du Lac Cedex, France
Jean-Louis Coutaz
Affiliation:
LAHC, University of Savoie, 73 376 Le Bourget du Lac Cedex, France
Agnieszka Wolos
Affiliation:
Institute of Experimental Physics, Warsaw University, Hoza 69, 00-681 Warsaw, Poland
Maria Kaminska
Affiliation:
Institute of Experimental Physics, Warsaw University, Hoza 69, 00-681 Warsaw, Poland
Ramūnas Adomavičius
Affiliation:
Semiconductor Physics Institute, Goštauto 11, 2600 Vilnius, Lithuania
Klemensas Bertulis
Affiliation:
Semiconductor Physics Institute, Goštauto 11, 2600 Vilnius, Lithuania
Arunas Krotkus
Affiliation:
Semiconductor Physics Institute, Goštauto 11, 2600 Vilnius, Lithuania
Get access

Abstract

A number of experimental techniques were used to characterize structural quality, ultrafast carrier dynamics and deep center properties of low-temperature-grown GaAs doped with Be. GaAs layers grown at 280 °C, doped with the Be concentration from 5×1017 cm-3 to 2×1019 cm-3 and annealed at temperatures between 500 and 800 °C were studied. Electron trapping times in these samples varied from hundreds of femtoseconds to several picoseconds. A non-monotonous electron trapping time dependence on Be doping level is explained by the influence of triple-charged gallium vacancies and single-charged Be-acceptors on the number of ionized As antisite defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nolte, D. D., J. Appl. Phys. 85, 6259 (1999)Google Scholar
2. Liliental-Weber, Z., Cheng, H. J., Gupta, S., Whitaker, J., Nichols, K., and Smith, W., J. Electron. Mater. 22, 1465 (1993)Google Scholar
3. Lyusberg, M., Sohn, H., Prasad, A., Specht, P., Liliental-Weber, Z., Weber, E. R., Gebauer, J., and Krause-Rehberg, R., J. Appl. Phys. 83, 561 (1998)Google Scholar
4. Bliss, D. E., Walukiewicz, W., Ager, J. W., Haller, E. E., Chan, K. T., and Tanigawa, S., J. Appl. Phys. 71, 1699 (1992)Google Scholar
5. Specht, P., Jeong, S., Sohn, H., Lyusberg, M., Prasad, A., Gebauer, J., Krause-Rehberg, R., and Weber, E. R., Mater. Sci. Forum 258-263, 951 (1997)Google Scholar
6. Melloch, M. R., Otsuka, N., Mahalingam, K., Chang, C., Woodall, J. M., Pettit, G. D., Kirchner, P. D., Cardone, F., Warren, A. C., and Nolte, D. D., J. Appl. Phys. 72, 3509 (1992)Google Scholar
7. Krotkus, A., Bertulis, K., Dapkus, L., Olin, U., and Marcinkevièius, S., Appl. Phys. Lett. 75, 3336 (1999)Google Scholar
8. Martin, G. M., Appl. Phys. Lett. 39, 747 (1981)Google Scholar
9. Grenier, P. and Whitaker, J. F., Appl. Phys. Lett. 70, 1998 (1997)Google Scholar
10. Stellmacher, M., Nagle, J., Lampin, J.-F., Santoro, P., Vaneecloo, J., and Alexandrou, A., J. Appl. Phys. 88, 6026 (2000)Google Scholar
11. Marcinkevièius, S., Krotkus, A., Jasutis, V., Bertulis, K., Tan, H. H., Jagadish, C., and Kaminska, M., Appl. Phys. Lett. 68, 397 (1996)Google Scholar
12. Zhang, S. B. and Northrup, J. E., Phys. Rev. Lett. 67, 2339 (1991)Google Scholar