Skip to main content Accessibility help

Indium Ion Doping During Si Molecular Beam Epitaxy

  • N. Hirashita (a1), J.-P. Noel (a1), A. Rockett (a1), L. Markert (a1), J.E. Greene (a1), M.A. flasan (a2), J. Knall (a2), W.-X. Ni (a2) and J.-E. Sundgren (a2)...


A single-grid UHV-compatible ion source was used to provide partially-ionized accelerated In+ dopant beams during Si growth by molecular beam epitaxy (MBE). Indium incorporation probabilities in 800 °C MBE Si(100). as measured by secondary ion mass spectrometry, ranged from < 10−5 (the detection limit) for thermal In to values of 0.02–0.7 for In+ acceleration energies EIn, between 50 and 400 eV. Temperature-dependent Hall-effect and resistivity measurements were carried out on Si films grown at 800 °C with EIn = 200 eV. Indium was incorporated substitutionally in electrically active sites over the entire concentration range examined. 1016— 1019 cm−3, with an acceptor level ionization energy of 165 meV. The 111 meV level associated with In-C complexes and the 18 meV “supershallow” level reported for In ion-implanted Si were not observed. Roomtemperature hole mobilities μ were higher than both annealed In-ion-implanted Si and Irvin's values for bulk Si. Phonon scattering was found to dominate at temperatures between 100 and 330 K and μ varied as T−22.



Hide All
1. Greene., J.E. Barnett, S.A.. Rockett, A.. and Bajor, G.. Appl. Surf. Sci. 22/23. 520 (1985).
2. Ota, Y., J. Appl. Phys. 51. 1102 (1980).
3. Bajor, G. and Greene, J.lF.. J. Appl. Phys. 54. 1579 (1983).
4. Hasan, M.-A.. Knall, J.. Barnett, S.A., Rockett, A., Sundgren, J.-E., and Greene, J.E.. unpublished.
5. Rockett, A.. Knall, J., Hasan, M.A.. Sundgren, J.-F., Barnett, S.A.. and Greene, J.. J. Vac. Sci. Technol. A4. 900 (1986).
6. Thomas, R.N.. Braggins, T.T.. Hobgood, H.M., and Takei, W.J.. J. Appl. Phys. 49. 2811 (1978).
7. Baron, R., Baukus, J.P., Allen, S.D., McGill, T.C., Young, M.H.. Kimura. II, H., Winston, V.. and Marsh, O.J.. Appl. Phys. Liett. 34. 257 (1979).
8. Cerofolini, G.F., Pignatel, G.U., Mazzega, E., and Ottavini, G., J. Appl. Phys. 58, 2204 (1985).
9. Cerofolini, G.F., Ferla, G., Pignatel, G.U., and Riva, F., Thin Solid Films 101, 2204 (1985).
10. Landolt-Börnstein, Numerical Data and Functional Relationship in Science and Technology, Group B, Vol.17, Semiconductors, eds. O., Madelung, M., Schulz and H., Weiss (Springer, Berlin, 1984).
11. Knall, J.. Sundgren, J.-E., Hansson, G.V., and Greene, J.E., Surf. Sci. 166, 512 (1986).
12. Rockett, A., Barnett, S.A., and Greene, J.E., J. Vac. Sci. Technol. B 2, 306 (1984).
13. van der Pauw, L.J., Philips Res. Repts. 13, 1 (1958).
14. Barnett, S.A., Winters, H.F., and Greene, J.E., Surf. Sci., in press.
15. Sze, S.M., Physics of Semiconductor Devices, 2nd ed. (John Wiley and Sons 1981).
16. Schroder, I.K., Braggins, T.T., and Hllobgood, H.M., J. Appl. Phys. 49, 5256 (1978).
17. Parker, G.J., Brotherton, S.D.. Gale, I., and Gill, A., J. Appl. Phys. 54, 3926 (1983).
18. Lin, J.F., Li, S.S., Linares, L.C., and Teng, K.W., Solid State Electronics 24, 827 (1981).
19. Blakemore, J.S., Semiconductor Statistics (Pergamon, Oxford, 1962).
20. Lang, J.E., Madarasz, F.L., and Hemenger, P.M., J. Appl. Phys. 54, 3612 (1983).
21. Kubiak, R.A.A., Leong, W.Y., and Parker, E.H.C., J. Vac. Sci. Technol. B 3, 592 (1985).
22. Onton, A., Fisher, P.. and Ramdas, A.K., Phys. Rev. 163, 686 (1967).
23. Backenstoss, G., Phys. Rev. 108, 1416 (1957).
24. Sze, S.M. and Irvin, J.C., Solid-State Electronics 11, 599 (1968): and D.M. Caughey and R.E. Thomas, Proc. IEEE 55, 2192 (1967).
25. Li, S.S., Solid-State Electronics 21, 1109 (1978).
26. Thurber, W.R., Mattis, R.L., Liu, Y.M., and Fillibean, J.J., J. Electrochem. Soc. 127, 2291 (1980).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed