Skip to main content Accessibility help
×
Home

Increased, Directed Osteoblast Adhesion at Nanophase Ti and Ti6Al4V Particle Boundaries

  • Thomas J. Webster (a1) and Jeremiah U. Ejiofor (a1)

Abstract

Increased functions of osteoblasts (bone-forming cells) have been demonstrated on nanophase compared to conventional ceramics (specifically, alumina, titania, and hydroxyapatite), polymers (such as poly-lactic-glycolic acid and polyurethane), carbon nanofibers, and composites thereof. Nanophase materials are materials that simulate dimensions of constituent components of bone since they possess particle or grain sizes less than 100 nm. However, to date, interactions of osteoblasts on nanophase compared to conventional metals remain to be elucidated. For this reason, the objective of the present in vitro study was to design, fabricate, and evaluate osteoblast adhesion on nanophase metals (specifically, Ti and Ti6Al4V). Results of this study provided the first evidence of increased osteoblast adhesion on nanophase compared to conventional Ti-based metals. Moreover, directed osteoblast adhesion was observed preferentially at metal particle boundaries. It is speculated that since more particle boundaries were created through the use of nanophase compared to conventional metals, increased osteoblast adhesion resulted. Because adhesion is a necessary prerequisite for subsequent functions of osteoblasts (such as deposition of calcium-containing mineral), the present study suggests that Ti-based nanophase metals should be further considered for orthopedic implant applications.

Copyright

References

Hide All
1. Webster, TJ, Siegel, RW, Bizios, R. Osteoblast adhesion on nanophase ceramics. Biomaterials 1999; 20: 1221.
2. Elias, KE, Price, RL, Webster, TJ. Enhanced functions of osteoblasts on nanometer diameter carbon fibers. Biomaterials 2000; 23: 3279.
3. Kay, S, Thapa, A, Haberstroh, KM, Webster, TJ. Nanostructured polymer/nanophase ceramic composites enhance osteoblast and chondrocyte adhesion Tissue Engineering 2002; 8: 753.
4. Price, RL, Waid, MC, Haberstroh, KM, Increased, Webster TJ., select bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 2003; 24: 1877
5. Webster, TJ, Siegel, RW, Bizios, R. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials 2000; 21: 1803.
6. Supronowicz, PR, Ajayan, PM, Ullmann, KR, Arulanandam, BP, Metzger, DW, Bizios, R. Novel current-conducting composite substrates for exposing osteoblasts to alternating current stimulation. J. Biomed. Mat. Res. 2002; 59: 499.

Increased, Directed Osteoblast Adhesion at Nanophase Ti and Ti6Al4V Particle Boundaries

  • Thomas J. Webster (a1) and Jeremiah U. Ejiofor (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed